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We discuss applications of the abstract scheme of part I of this work, in 
particular of infrared bounds and chessboard estimates, to proving the 
existence of phase transitions in lattice systems. Included are antiferro- 
magnets in an external field, hard-core exclusion models, classical and 
quantum Coulomb lattice gases, and six-vertex models. 

KEY W O R D S :  Phase t rans i t ions ;  ref lect ion pos i t i v i t y ;  chessboard esti- 
mates ; contours.  

1. I N T R O D U C T I O N  

This is the second paper  in a series descr ibing appl ica t ions  of  reflection 
posi t iv i ty  (RP) to proving  the existence of  phase  t ransi t ions  in mode l  systems. 
We exploi t :  (1) the Peierls chessboard  a rgument  first used by  G l i m m  et al. ~22~ 

and  fur ther  developed by Fr6h l ich  and  Lieb~la~; (2) the me thod  o f  infrared 
bounds ,  first used by Fr6h l i ch  et al. ~17~ and  extended to qua n tum systems by 
Dyson  et aI56~ Reviews of  some of  these ideas can be found  in Refs. 8, 9, 18, 
30, 36, and  49. In  pape r  I ~zl~ of  this series, ~ we presented  a general  f rame-  
work,  and  in a th i rd  paper ,  a2~ we give appl ica t ions  to q u a n t u m  field theories.  
In this paper ,  we deal  with shor t - range lat t ice models  and  C o u l o m b  lat t ice 
gases. In I, we discussed long-range lat t ice models .  A fur ther  app l ica t ion  to a 
mode l  of  a l iquid crystal  has been found  by  He i lmann  and  Lieb ~26~ and  one 
to d ipole  lat t ice gases by Fr6h l ich  and  SpencerJ  19~ 
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Erratum to paper I(11~: The Mermin argument (4~ uses Y >~ 0, so this hypothesis should 
be added to Theorem 5.2 of Ref. 11. On the other hand, the existence part of the theorem 
does not require Y/> 0. 
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Typically, the proof  of phase transitions by the method of infrared bounds 
involves three steps: 

(IR1) Verify reflection positivity for a suitably defined reflection. In 
many of the models below the reflection is in planes through lattice sites 
rather than between lattice sites. 

(IR2) Choose the quantity, typically the Fourier transform of a two- 
point function, for which an infrared bound is to be proven, e.g., (g (p)S( -p) )  
~< (/?Ep) - 1, and evaluate E~, the spin wave energy. Check that f Ep- 1 dp < oo. 

(IR3) Complete the argument, typically by proving a sum rule on the 
Fourier transform. Often symmetry is useful in this last step, but it is not 
essential; see Ref. 17. For infrared bounds one needs some couplings crossing 
the plane of reflection. 

Typically the proof of phase transitions by the Peierls chessboard method 
also involves three steps: 

(PC1) Identical to (IR1). 
(PC2) Choose some decomposition of the configuration space at a single 

site, or small number of sites, and let p(l~ . . . . .  p(n~ be the corresponding 
projections. Let P(~ be the P(~ associated to site ~. Use the Peierls chess- 
board estimate to show that for suitable i and j, sun ~P(~P(J~; ~ 0 as p, the 
inverse temperature, goes to infinity. Here ( .  �9 - ) is typically an infinite-volume 
limit of periodic bc equilibrium states. To prove this, one typically must com- 
pare the energy per unit volume of a finite number of periodic configurations 
to the energy per unit volume of some ground state. 

(PC3) Completion of the argument: Show that (PC2) implies long-range 
order. This is discussed below. 

We will assume some familiarity with these methods either from paper I 
or some of the other references given. We expand on step (PC3) in a number 
of successively more complicated situations. 

1.1. T w o  States  Related by a S y m m e t r y  

This is the situation of the usual spin-~ Ising model. By symmetry of the 
interaction and boundary conditions, 

and since only two states are involved, (p(l~) + (p~2~) = 1, so (p~l)) = 
(p~2~) = 1/2. Thus, once 

(i~ ~j) A(~.j) (1.2) sup(P~ P~ ) - 

is less than 1/4 for (i , j)  = (1, 2) we have that 

lim IAI -~ ~ [(e(~)P(~J)) - (P2))(P~J))] ~ 0 (1.3) 
A'--> co g , Y ~ A  

implying that { . . .  ) is not an ergodic state, i.e., multiple phases occur. 
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1.2. Two  Important  States Related by a Symmetry 

This is the si tuation of  the anisotropic classical Heisenberg model  ~3~ or 
the ~ field theory. (22) There are now three regions of  the single-site con- 
figuration space singled out  (the two polar  regions, call them 1 and 2, and the 
remainder  of  the sphere, call it 0). Equat ion  (1.1) still holds and A (~j), given 
by (1.2), goes to zero for  (ij) = (01), (02), (12) as ~ -+  or. Finally, by a chess- 
board  estimate,  (p(o~) _+ 0 so, by (1.1), (P (~ )  ---> 1/2 and thus (1.3) still holds. 

1.3. Two Important  States Not Related by a Symmetry 

A good example of  this is the Pi rogov-Sinai  triangle model,  which we 
discuss in Section 2. Here  there are two impor tan t  states P(~) and p(2) and a 
third state p(0) with 

(P~~ . -+  0 (1.4) 

a s / 3 - +  0% uniformly as ~, an "ex te rna l  field pa ramete r , "  varies through a 
suitable compac t  set [a, b]. Moreover ,  A (~J~, given by (1.2), goes to zero 
uniformly in/x for (ij) -- (01), (02), (12). However ,  (1.1) no longer holds. We 
use a device going back to Ref. 8 (related to an idea in Ref. 17): Suppose tha t  

s(t~) =- (p(1))~,, and t(tz ) - (p(2))~,, 

obey s(a) --+ O, t(b) -+ 0 as/3 --~ or. Vary/x  between a and b at  fixed, large/3. 
Either s(/x) varies continuously,  in which case there ,is a range of  txo with 
s(tzo) > 1/3, t(t~o) > 1/3 and hence at least two phases, by (1.3), or else s(~) 
varies discontinuously,  in which case, picking a tz0 where s(~) is discontinuous,  
we get at least two phases,  by taking (subsequence) limits ( . .  ')B,,o+O and 
(" �9 ")B,,0-o. The main  defect in this procedure  is that  we do not  know which 
possibility occurs (al though we note tha t  if there is precisely one tL with 
multiple phases,  the second is realized) nor  do we obtain any kind of  continuity 
of/Xo in/3 (al though typically one can compute  l i m ~  ~t~o). 

1.4. Three Important  States w i th  Two Related by Symmetry 

A typical example is the Fisher stabilized ant i fer romagnet  at critical 
external field: see Section 3. There are four  regions p(o~ . . . . .  p<3~, (1.4) and 
(1.1) hold, s ( a ) ~  O, and wOO - ~P(~a~)B, . -+  0 fo r /x  = b. We now proceed 
as in Section 1.3 to find either a point  with s(/xo) = t(tzo) ~ 1/3 or else two 
states ~. �9 �9 ) , o -  o and ( .  �9 �9 ),o + o with (p~3~),o_ o small, (P(~) ,o_  o = ~P(2~),o- 0 
and (P(3~),0+ o large. By (1.3), ( . .  "),o-O is still not  ergodic, so there are at 
least three states. 
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1.5. M a n y  States Related by a S y m m e t r y  

A typical example is the three-state Potts  model discussed in Section 3. 
We cannot  just  use the lack of  ergodicity, so instead we use: 

T h e o r e m  1.1.  Let ( .  �9 �9 ) be a translation-invariant state which is a linear 
combinat ion o f  k or fewer ergodic states. Let LfX~.(r j~=~ be a set of  m distinct 
observables and let 

Mis = lim [A1-1 ~ (X(~~ s)) (1.5) 
A ~  oo cG ~.eA 

Then M~j is a matrix with rank at most  k. 

Remark. The limit in (1.5) always exists by the mean ergodic theorem. 

Proof. Let ( - . . )  = ~ :  ~h~(.- .)r with ( " - ) ~  ergodic. Then 

OJ,7 

so that  
k 

h~(x~ b(x~ b 
r = J _  

is rank k or fewer. �9 

I f  now the X (~) are projections with ~P(~) = 1, then ~jM~j = (P~)). I f  
A (~j) --~ 0 (as/3 -+  oo) for all i r j ,  then M~j goes to zero off-diagonal as/3-+ oo. 
I f  we can find an integer lo such that  lo of  the (p(o)  are all bigger than, say, 
(210)-~, then M will have an lo x lo block which is very small off-diagonal 
and > (2/o)- ~ on-diagonal ;  hence M will have rank at least lo, so there will 
be at least l0 phases by Theorem I. 1. One way of  realizing this possibility is 
to have a symmetry which implies that  lo P ' s  all have the same expectation 
and a chessboard estimate which shows that  the remaining P ' s  are all small. 

1.6. M a n y  Phases W i t h o u t  Symmetr ies  

As a final level o f  complication, we want  to show how the scheme of  
Section 1.3 can be extended. We consider a situation with k + 1 important  
states and k external field parameters,  say h i , . . . ,  A~, varied in the region 

k 

0 ~< ~ ~< 1, ~=lh~ ~< 1. Let hk+l = 1 -- ~1~ and suppose that 

lim (P2))~ = 0 if hi = 0 (uniformly in the other h's) (1.6) 

We want  to show that  for fl large there is some fl (~ = (A(o),..., ,,~+lJ~(~ ~ and a 
state (-  - - ) which is a convex linear combinat ion of  states which are limits of  
( . . . ) ~ . ~  as h - +  fl (~ so that  (P(~)) = (p ro ) ,  i = 1 . . . . .  k + 1. Thus, as in 
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Section 1.5, there will be at least k + 1 phases. Without any change one can 
accommodate situations with some symmetries and fewer parameters needed. 
Fix/3 large and let A k be the simplex 

(h 1 . . . . .  A~+I): hi /> O, Z i = 1 
1 

Let f :  Ak --> A~ be given by 

[f(h(~ = (P"~)e,Ao (P(J~)B,~o 
1 

Let F(A (~ be the convex set in A~ consisting of all limits of convex combina- 
tions of limits lima,~aof(An). Then F maps Ak into subsets of A~ so that F(ho) 
is closed and convex and F is semicontinuous in the sense that if a~ -+ a and 
a~ ~ F(A~) and An --+ A, then a ~ F(A). Moreover, by (1.6), F is close to leaving 
each face of A~ fixed. We now used the following topological results essentially 
in Brdzis. (2~ 

T h e o r e m  1.2. Fix k. Let A~ be the k-simplex. Then there exists E > 0 
so that every map F f r o m  A~ into 2A~ obeying: 

(i) F(x)  is convex for all x; 
(ii) if an --~ a, xn ---> x, and a~ ~ F(xn), then a ~ F(x);  

(iii) for every generalized face G of A~, x ~ G and a ~ F(x )  implies 
dist(a, G) < e; 

has 

( '  ')  
k +  l ' ' ' " k +  1 ~UF(x) 

x~Ak: 

If  one notes that (ii) is equivalent to the statement that the graph 
{(x, a)Ia ~ F(x)} is closed, then this theorem is equivalent to Theorem A3 
proven in the Appendix. This proves the claim above about k + 1 phases. 

Finally we list the models treated in the remainder of the paper~ In 
Section 2 we "warm up"  with the elementary models: the triangle model of 
Pirogov and Sinai(42~ and a model of Ginibre studied by Kim and Thompson. (a2~ 
In Section 3 we consider various antiferromagnets: we recover Dobrushin's 
result <5~ on multiple equilibrium states in the Ising antiferromagnet (in the 
interior of the critical triangle) and extend this result to anisotropic, classical 
Heisenberg ferromagnets. When next-nearest-neighbor ferromagnetic cou- 
pling is added (Fisher stabilization) we obtain three equilibrium states at suit- 
able external field (recovering a result of Pirogov and Sinai) and also multiple 
states in the classical, isotropic antiferromagnet in external field. Furthermore, 
we discuss a three-state Potts model recently studied by Schick and Griffiths. (46~ 
In Section 4 we treat lattice gases with nearest neighbor exclusion for the 
square, triangular, and hexagonal lattices, recovering results of Dobrushin, (5~ 



302 JOrg Fr6hlich, Robert B. Israel, Elliott H. Lieb, and Barry Simon 

Heilmann, (25~ and Heilmann and Praestgaard. <27~ In Section 5 we consider 
classical and quantum Coulomb monopole gases. Typical is our result that in 
a lattice where each site can have charge 0, + 1, or - 1 with Coulomb mono- 
pole forces, at low temperature and suitable fugacity there are three phases, 
one with mainly unoccupied sites and one with the A (resp. B) sublattice 
occupied with positive charges and the B (resp. A) sublattice occupied with 
negative charges. In Section 6 we discuss some six- and eight-vertex models. 
In Section 7 we describe a useful version of the chessboard Peierls argument 
which is applicable in particular to the Slawny (5~ model of  a ferromagnet 
with an infinity of  phases. Finally in Section 8 we describe a rather special 
model which in v dimensions has nearest neighbor ferromagnetic coupling J 
and next-nearest-neighbor antiferromagnetic coupling J / 2 ( u  - 1). For  this 
kind of model, discrete symmetries are only presumably broken in three or 
more dimensions and continuous symmetries only in five or more dimensions. 
At the end of the paper, we include an Appendix containing a topological 
result of some significance in applications to complicated models. 

We note that our results for the triangular and hexagonal lattice suffer 
from the same defects noted in Ref. 11 for the face-centered cubic lattice: 
namely we cannot be certain that the infinite-volume state has reflection 
positivity unless there is a single state. Thus, typically we can only assert the 
existence of multiple phases and not of  long-range order or number of phases; 
see Sections 3 and 4. 

The methods presented in this series generally yield relatively accurate 
lower bounds on the transition temperature. If, in addition, some of the tricks 
of the trade, most  especially that of Gallavotti  and Miracle-Sold (21~ are used, 
we would expect that, in the simplest models, our bounds are within about  20~o 
of the exact critical temperature. In this paper, we will not push the arguments 
to the point of explicit lower bounds on transition temperatures, but we will 
be careful to get pretty good upper bounds on probabilities of contours which 
then could be used as an element of good bounds on transition temperatures. 

2. T W O  S I M P L E  M O D E L S  : THE T R I A N G L E  IS ING M O D E L  OF 
P I R O G O V - S I N A I  A N D  G I N I B R E ' S  M O D E L  

As a warmup, we begin with two simple models. We are especially inter- 
ested in illustrating the method for obtaining phase transitions without 
symmetry. 

M o d e l  2.1. This is a model of Ginibre, studied in mean field approxima- 
tion by Kim and Thompson.  (32~ The basic Hamiltonian H in a finite volume 
A, a "simple cubic" torus, is 
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where the first sum is over nearest neighbor pairs. Letting h = - 3 ~ a - t ,  we 
can add a constant  to H and obtain 

H ' = H + c o n s t =  ~ ( s ~ - s ~ )  2 + a ~ ( s ~ - h )  2 (2.1') 
(c~B) 

The spins s~ are required to take integer values 0, + 1 . . . .  ; we allow the 
possibility of  a priori weights w(n) for {sis = n}, so that  at inverse temperature 
/3 the parti t ion function is given by 

1 ~g~Z 

convergent if w(n) <~ exp(AnB), with B < 2. Kim and Thompson  studied three 
models:  (a) w(n) = 1, all n; (b) w(n) = 1, In] _< N:  w(n) = 0 for In I > N;  
and (c) w(n) = 1 for n /> 0 and w(n) = 0 for n < 0. 

To find the phase structure at low temperatures,  it is always useful to 
look at ground states, i.e., configurations minimizing H. F r o m  (2.1') it is 
obvious that  the ground state has s~ = s (~ for all % where s (~ is determined 
by minimizing (s (~ - h) 2. Clearly, if h r + 3, + } . . . . .  there is a unique such 
s (~ but at h = k + 3(k ~ Y) two values (namely s (~ = k, k + 1) minimize H. 
Thus at low temperatures,  we expect that  there are infinitely many hk(fl) (near 
k + 3 as fl ~ oo) with multiple phases. We will prove this assuming 
D >1 w(n) /> 3 > 0 for all n [without this assumption one can still show, as 
below, that  if w(n) r 0 all n, then for /3  > fik there are multiple phases at 
some hk(/?) with lhk -- k - 31 < 3, but/3k may  go to oo as k --+ _+ oo]. In case 
w(n) r 0 for In] < N and w(n) = 0 for  In] > N, we get t ransi t ions at 2N 
points. Wi thout  loss we look at k = 0. 

We begin by noting that  since H has only nearest neighbor coupling, the 
model  has RP  about  planes between lattice sites and or thogonal  to the co- 
ordinate axes. Let P~• be the projection onto s~ >< 3. Let A have sides 4L x 
4L x . . .  4L and let Q be the product  I-L~,Pg (~, where q(a) is independent of  
~ 2 . . . ,  av and takes the values + + - - + + . . . . .  in the a 1 direction. 
Clearly, by taking all spins to be either 0 or 1 

Z >i 3 tA1 exp[-flc(h)IAI] 

where c(h) = min(ah 2, a(h - 1)2). On the other hand, 

Z ( Q )  <. D EAI e x p [ - 3 l A l f l  - pd(h, fi)lAl] 

where 

exp[-f ld(h,  13)1 : ~ exp[-f la(h - n) 2] 
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uniformly in a, ~, 
In case all w, 

at h = �89 Use the 
f o r h  < �89 

It  is easy to see that uniformly for [h - �89 < �89 and /3 > /30, e -Bar 
A(/3)e -ecr with A(/3o) ~ 1 as/30 -~ oc. Thus, one obtains a uniform bound 

( Q )  ~< [q(fi)]lAI (2.2) 

with q --+ 0 as/3 -+ oo uniformly in A and ]h - �89 < �89 (In passing, we note 
that one could be more explicit in the bounds by replacing P~ by four P's ,  
namely po, pz, p> ,  p< corresponding to s,  = 0, 1, />2, ~< - 1. There would 
then be six Q's. The one for the pair po, p~ could be estimated as above. The 
Q with a P< or P> can be estimated by a chessboard estimate and an easy 
estimate on ( I ~ A P  >) or ( I ~ A P < ) . )  Given (2.2), the chessboard Peierls 
argument (see Ref. 13 or Ref. 11) immediately implies that 

(P .+P, - )  < ~2(/3) 

A, and h with ]h - �89 < �89 where ~2(/3) -+ 0 as/3 ~ oo. 
= 1, we are now done, since by symmetry (P~+) = (P~- )  
strategy of Section 1.1. In general, we need only note that 

~< 

goes to zero and 
Section 1.3, there 

(P~+) ~< P~+ (a chessboard estimate) 

(~_,>~ID e x p [ - a f i ( n -  h)2])/3 exp(-a/3h 2) 

for h > �89 (P~- )  goes to zero. Thus, by the strategy of 
is for/3 />/3o a multiple phase point ho(/3) with ho(/3) -+ �89 

as/3 ~ o9. Notice that since the estimates on/30 only depend on a, 3, and D 
we get a bound uniform in k on/3k. Thus: 

T h e o r e m  2.1. Consider the Hamiltonian H of (2.1) with integral spins 
and a priori weights w, obeying 0 < 3 ~< w, ~< D. Then there is a/3o depend- 
ing only on 3, D, and a so that for/3 > /30 there are infinitely many h~(/3) 
where there are multiple phases. Moreover, thk -- k - �89 < �89 and 

lim hk(/3) = k + �89 

uniformly in k. 
Since the above model is the first one considered, we have given full 

details. Henceforth, we will be briefer. 

M o d e l  2.2.  (Pirogov-Sinai triangle model). Consider spins ~ taking 
values + 1 (with equal a priori weights) on a two-dimensional "simple cubic" 
torus A. The Hamiltonian is 

(~/3> <cr ~z 

where 
j, k, h /> 0 (2.3) 
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the first sum is over all nearest neighbor pairs, and the second sum is over all 
triples forming an isosceles right triangle with side 1. This model has been 
considered by Pirogov and Sinai, (42~ whose results we recover below. The 
important fact about this model, both historically and conceptually, is that 
the usual up-down symmetry of the Ising model is absent. The usual Peierls 
argument is very difficult, but Pirogov and Sinai succeeded in treating the 
model by introducing the notion o f "  contour gas." RP makes this unnecessary. 

The periodic state is not RP about the "usua l "  reflections midway 
between lattice planes orthogonal to the coordinate axes. It is, however, RP 
about reflections in these lattice planes themselves since - H  then has the 
form OA + A. Notice that this kind of reflection positivity is independent of 
the signs of j, k, h. However, the equality of the couplings of the four kinds 
of right triangles is critical (it is irrelevant for the Pirogov-Sinai argument); 
the equality of the horizontal and vertical j ' s  is not important for RP. The 
type of chessboard estimate that holds with RP through the sites involves the 
dual lattice and is given by Theorem 4.3 of Ref. l 1 ; see also the discussion 
of the AC model in Ref. 13. Given this estimate, we can say two things 
immediately about the possible ground states: 

(i) Among the ground states must be one of the 16 states obtained by 
picking a configuration of a 2 • 2 block and extending it to be periodic with 
period 2. 

(ii) Any other ground state must have the property that every 2 x 2 
block is among those that yield a minimal energy when extended periodically 
as in (i). 

Because of reflection and rotational symmetries, the 16 states fall into six 
types given by Table I. The quantity e(n) is the energy per site, i.e., (E)/IAI,  
for the state extended periodically. 

From this table and (i) and (ii) above, one sees that as long as 

2j + I4k - h I > 2k + �89 (2.4) 

the only candidates for ground states are all plus or all minus and that at 
h = 4k there is a change over from plus to minus. Thus, we imagine fixing 
k, j with 

k < �89 (2.5) 

Table I. States for the PS Triangle Model 

n Block -e(n) 

1 ++++ 2 j - 4 k + h  
2 =- 2 j + 4 k  - h 
3 +- 0 + -  

n Block -e(n) 

4 + ~  D 2 j  - +  

5 ; = -2k  - �89 
6 _++ + 2k + �89 
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and vary h in a ne ighborhood  of  h = 4k. By (2.5), condit ion (2.4) holds for 
all such h. We now want  to est imate the probabi l i ty  of  a con tour  separat ing 
a set of  plus spins f rom a set of  minus  spins. A contour  of  length l runs 
through precisely l points  o f  the dual lattice. Fo r  each such point  i we let 
F~ be the project ion onto the state of  the four  neighboring spins forced by the 
contour.  Using Theorem 4.3 of  Ref. 11, we bound  the probabi l i ty  of  the 
contour  by l 7,(F~)'s and so the statistical weight of  any contour  of  length l is 
bounded  by 

B ~ -  [max(~,(F0)] ~ (2.6) 

Let  - e~o = m a x ( -  e(1), - e(2)). Then,  if i is a vertex of  a straight por t ion  of  
contour ,  7,(F~) IAI is the expectat ion of  state 3 periodized;  hence ~,(F0 ~< 
e x p [ - p ( e ( 3 )  - e~)]. A m o n g  the var ious corners,  the worst  one is 

+ ? 

7 +  
Replacing ? by + or - in each site and using chessboard again on each site, 
we see tha t  the quant i ty  B of  (2.6) is 

B = max{exp[- /3(e(3)  - e~)]; exp[- /?(e(6)  - e~)] 

+ e x p [ - p ( e ( 4 )  - e~)]} 

Under  (2.5), B -+  0 uniformly as/~ ~ oo for h near 4k. Moreover ,  for  h > 4k 
(resp. h < 4k) ( P _ )  (resp. ( P + ) )  goes to zero as/3 ~ oe. By the strategy of 
Section 1.3, we obtain:  

T h e o r e m  2.2.  Consider  the model  o f  (2.3) with j ,  k fixed obeying (2.5). 
Then  for  all/? large, there is an h(/?) where multiple phases occur. Moreover ,  
h(/3) ~ 4k as/~ -+  oo. 

When  (2.3) fails, one can still analyze the model  by the above methods.  
I f  - j  > k > 0, there is a first-order phase transit ion between states 2 and 
4 for  h ~ 4(k + j ) ,  and i f j  < k < 0, there is a t ransi t ion between states 1 
and 4 for  h _~ 4(k - j ) .  

One can ask what  happens  when (2.3) holds but  (2.5) fails. We have  
nothing definite to report ,  but  one can look at the ground state structure to 
get some idea of  what  is likely. The structure that  results is very similar to 
that  of  the hard-core gas with bo th  nearest  and second nearest  neighbor 
exclusion (see Section 4). I f  (2.5) fails, then (2.4) still holds for lh I very large, 
but  for  h ~ 4k, (2.4) fails. In the region where (2.4) fails, there are four  basic 
b l o c k s : A  = 2 + , B =  u  + + ; , a n d D  = ++ 2 ; and so by (i) a b o v e t h e r e  
are four  ground states with per iod two in bo th  directions. By (ii) above,  
g round  states are precisely configurations obeying:  
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(iii) In every 2 x 2 block of four spins, one is minus. 
(iv) Each minus spin has all its nearest and next nearest neighbors plus. 
There are numerous states: Any set of only A and B columns or only 

C and D columns or any set of only A and D rows or only B and C rows will 
be a ground state, and these are all the ground states. Since there are no 
ground states with A and C on the same row, one might think there could be 
some kind of long-range order; however, there are infinitely many con- 
figurations with A and, C on the same row, all with energy relative to the 
ground state uniformly bounded: for example, take a single column of C's 
imbedded in a " s ea"  of D's and change a finite chain of D's in a single row 
all to A's. The change in energy needed to insert the A's is bounded uniformly 
in the length. This suggests that in the region h ~ 4k there is no long-range 
order. Moreover, at the critical h's where the ground state shifts from type 6 
blocks to type 1 blocks or to type 2 blocks, the configurations that arise in a 
chessboard Peierls argument are ground states: So, presumably, there are no 
first-order phase transitions as h is varied when (2.5) fails, but there could 
well be a higher order phase transition. In that case, the phase diagram for t 3 
large, h ~ 4k, j ~ 2k would involve a shift from a line of first-order phase 
transitions to a line of higher order transitions. 

3. A N T I F E R R O M A G N E T S  

We begin by considering nearest neighbor antiferromagnets. In zero 
external field, the classical models are equivalent to the corresponding ferro- 
magnets, so the existence of multiple equilibrium states follows by the argu- 
ments of Peierls (41) (for the lsing case) and Malyshev (39) (for the classical 
Heisenberg case; see also Ref. 13). The quantum Heisenberg models are not 
equivalent, but the quantum antiferromagnet can be treated directly in zero 
external field; see Ref. 6 for the isotropic case, Ref. 13 for the two-dimensional 
anisotropic case. The first four models in this section involve antiferromagnets 
in external field. One no longer has RP under the reflection used in Ref. 6 (see 
Ex. 3.4 in Ref. 11), i.e., reflection in a plane between lattice sites combined 
with ~ -+ - r for the change of sign does not respect the external field. So 
one reflects in planes containing lattice sites. This introduces two unfortunate 
limitations. First, quantum spins are no longer allowed, since we have no 
results on RP for quantum systems when reflections are in planes containing 
sites. Second, one does not get useful infrared bounds without a next-nearest- 
neighbor ferromagnetic coupling (see Model 3.4 below). 

M o d e l  3.1. (Nearest neighbor Ising antiferromagnet in external field) 
The basic Hamiltonian in v dimensions is 

H = (1/2v) ~ cr,~a~ - h ~ ~ (3.1) 
(cr cr 
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the sum being over nearest neighbors. We will recover the result of Dobru- 
shin (5~ that there are multiple phases in the triangle in the (T, h) plane with 

lhl + T/To ~< 1 (3.2) 

(we have made no attempt to compare our To with his). 
Merely for notational simplicity, we consider the case v = 2. The periodic 

states are RP with respect to reflections in lines orthogonal to the coordinate 
axes and through the sites. Moreover, the formal infinite-volume Hamiltonian 
has the form A + OA with respect to reflections in diagonal planes through 
the sites. The usual finite-volume cutoffs destroy this RP, but we can pick 
cutoffs which preserve this RP at the cost of losing the other RP; namely one 
takes a periodic box with sides at 45 ~ [One can produce a state which is RP 
in all these planes by the following special argument: first, by changing signs 
in the even sublattice, transform the model into a ferromagnet in staggered 
field. By a monotonicity argument ~2a~ and the GKS inequalities, the state in 
constant field is RP in all planes. By F K G  inequalities (see Ref. 16), one can 
turn on the staggering and by monotonicity again get RP in all planes.] 

As in Model 2.2, we must examine six periodic configurations for ground 
states. The values of - e (n )  can be obtained from Table II by setting E = 0 
(E is a parameter which is not relevant here but appears in Model 3.3 as a 
next-nearest-neighbor ferromagnetic coupling). 

Clearly, for Ihl < 1 there are two ground states obtained by periodizing 
state 1 and also by translating the resulting state by one unit. Given ~, let 
P ~  denote the projection onto spin + 1 at ~. We claim that as long as 

13(1 - Ih]) >/ rff 1 (3.2') 

(P~( + )P~ +,( T- ( -  1)1'~)) < �88 (3.3) 

To prove (3.3) we use a contour argument, but now we draw contours 
between nearest neighbor spins if they have the same sign. We now argue as 
in Model 2.2. Straight segments of contours contribute exp(-/3/2), while the 
worst corners contribute exp[-�89 - /3lhl)]  + exp[-(/3 -/31hi)], so for 
Ihl > �89 the worst contours are ones with only corners (as one should expect!) 
and these are uniformly small in the region where/3(1 - Ihl) is uniformly 
large. Thus (3.2') implies (3.3). 

Table II. States for the  Ant i fe r romagnet  

n Block - e(n) 

1 +-u �89 + 2E 
2 ++ - - � 8 9  
3 - -  - { - h + 2 r  

n Block - e (n )  

4 ++ - -2E 
5 +- �89 + +  

6 - +_ -�89 
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Next, we note that if there is a unique equilibrium state, then it must of 
necessity be mixing, so that as ~,-+ 0% <P~(+)p~+,(+))---> <p~(+))2 and 
(p~(_)p~+~(_)) __+ <p~(_))2. Since one of the squares is at least 1/4 (since 
(P~(+) )  is monotone in h, we know which is larger), (3.3) would fail. That is, 
(3.3) implies the existence of more than one equilibrium state. Noticing that 
(3.2') is equivalent to (3.2), we have: 

T h e o r e m  3.1. The Ising model of (3.l) has multiple equilibrium states 
in the region (3.2) for suitable To. 

Note that our proof  has actually shown more, namely nondifferentia- 
bility of the pressure in staggered field. 

M o d e l  :3.2. (Nearest neighbor, classical anisotropic Heisenberg anti- 
ferromagnet in external field.) One advantage of the chessboard Peierls 
argument is that it extends so easily to other single-spin distributions. We 
imagine replacing a~ in Model 3.1 by e~, ~eB by ~ .  ~ ,  and e is now a three- 
vector constrained to lie on the ellipsoid crx 2 + %2 + (1 - 3)~ 2 ~- 1 with 
3 > 0 and the natural induced measure. (This is equivalent to spherical cr's 
with anisotropic coupling). In the same way that Fr6hlich and Lieb (la> treat 
the zero-field model, we introduce a decomposition P~(+),  P~( - ) ,  and P~(0) 
corresponding to the two polar caps and the remainder of the ellipsoid. By an 
elementary chessboard estimate 

<P~(O)) < �89 for /3 >/~o, ]hi ~< 1 (3.4) 

[Warning: The configuration needed to prove (3.4) is different from that in 
Ref. 13, for the RP used here is different (i.e., reflection through, not between 
sites); <P~(O))A <~ <Q)i/iAi, where Q is the projection onto i-~,P~(0), the 
product being over only those u with each component even. In Ref. 13, all 7, 
arise. But <Q)Zllal is small for this Q also.] 

Next we claim that for suitable To 

<P=(+)P.+o(-T-(- 1)l'l)) < ~ (3.5) 

when (3.2') holds. This is proven as in Model 3.1, but now some extra con- 
figurations need to be considered in the contour estimation [put a contour 
around all P~(0)'s and between two neighboring P~(+) 's  or P~(-) 's] .  Using 
(3.4), or more properly (3.4) with 1/3 replaced by a much smaller number, 
each dual lattice site on a contour can be shown to contribute a small amount. 
Since (3.4) implies that <P~(+)) > �89 or <P~(-)) > �89 (3.5) proves the exist- 
ence of multiple equilibrium states. Thus: 

T h e o r e m  3.2. The anisotropic, classical Heisenberg antiferromagnet in 
external field has multiple phases in the region (3.2), where To depends on 
the amount of anisotropy. 
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Model  3.3.  (Fisher stabilized Ising ant iferromagnet . )  For  simplicity we 
work  in two dimensions.  The ground state structure of  the Hami l ton ian  H of  
(3.1) as h is varied is as follows. For  ]h I < 1, there are two ground states and 
for  ]hi > 1 clearly one. However ,  for h = _+ 1, there are three ground state 
blocks,  and since one of  them is given by 5 (or 6) in Table  I I  we can build 
up infinitely many  ground states as we did in Model  2.2 when (2.4) failed. 
Also, configurations of  type 5 destroy any kind of chessboard Peierls argu- 
ment.  Fisher (7) remarked  that  one can remove  the infinite degeneracy by 
adding a next-nearest-neighbor  ferromagnet ic  coupling, i.e., we take 

H = +  (3.6) 

where the last sum is over next nearest  neighbors and �9 > 0. Since �9 > 0, the 
model  still has both  RP propert ies  ment ioned above (the RP  we use in this 
model  is the one in coordinate  lines, which holds irrespective of  the sign of  
�9 , but  in Model  3.4 we use the diagonal  RP). We will prove  the following 
result, a lready obtained by Pirogov and Sinai(~3.~4~: 

Theorem 3.3.  Fix e > 0 in the Hami l ton ian  (3.6). Then for  all p > P0, 
there exist h(fi) so that  for  h = h(fi) there are at least three extremal  equil ibrium 
states. As/3 ~ o% h(/3) -+  1. 

The basic block energy densities are given in Table I I  (see Ex. 3.1). Near  
h = 1, only blocks 1 and 2 can occur and so there are only three ground 
states at h = 1, in agreement  with Fisher 's  remark.  Cover  A with �88 2 x 2 
squares and for  each 2 x 2 square a let Pa(i), i = 1 . . . .  ,16,  represent  the 
projections onto the 16 possible configurations. Let i = 1, 2, 3 correspond to 
_+,+- +-+, ++,+ + respectively. By an elementary chessboard est imate using 
Table  I I  

lim (Pa(i)) = 0 for  i~> 4 
B--, oo 

uniformly in A and h ~ [�89 ~-]. Moreover ,  

lira (P~(3)) = 0 if h = �89 
B--~ oo 

lira (P~(1) + Pa(2)) = 0 if h - 

and of  course by symmetry  

( f~(1) )  = (Po(2)) 

I f  we can prove  that  

l i m ( P a ( i ) P b ( j ) )  = 0  for  i C j ,  i , j =  1 , 2 , 3  (3.7) 

uniformly in a, b, A, h, then by the strategy of  Section 1.4 the theorem will 
be proven.  (In Section 1 we expressed results in terms of  ergodic states and 
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Cesaro averages;  here we need to use extremal  Gibbs  states and mixing.) We 
prove  (3.7) by drawing contours  between 2 x 2 blocks with distinct 2 • 2 
states. The contour  surrounding a or b will have state i ( =  1, 2, or 3) on one 
side and some states (say k) on the other. We could a t tempt  a chessboard 
a rgument  with the full eight-spin configurations,  i next to k. Instead,  we use a 
device that  will be very useful below (the same device is used in Ref. 26): 
namely,  we take a magnifying glass and pick out a convenient  par t  of  the 
eight-spin state. 

Specifically, given a contour  ~, of  length L with i 's inside, we consider the 
15 L possibilities obtained by specifying the possible states that  touch the 
outside of  the contour  (actually, if 7' has obtuse corners, fewer than 1 5 L occur). 
Each of  the 1 5 L possibilities so obtained will have the fo rm 

where I e  V labels all dual  lattice points in 7, and ai and b• are the 2 x 2 
blocks inside and outside ;r respectively. M o r e o v e r j ( I )  r i. l f j ( I )  /> 4, we 
majorize P~,(i)Pv,(j(I)) by P~,(j(I)). I f j ( I )  < 4, we majorize it by Pc(k), where 
c is the four  middle spins of  the eight-spin configuration. For  example,  if 
i = + ; a n d j ( I )  = _+ + with ai to the left ofbz, then k = ++ +. By checking out  
the possibilities one finds that  the k 's  which arise are always 4 or more.  Thus 
c~ is domina ted  by something of  the fo rm 

where Q contains at least L/3 distinct dual  lattice sites (each b can be a b1 for  
three I ' s  [) and k(J )  /> 4. Thus the probabi l i ty  of  a given contour  is dominated  
by 15Ca c where a a = exp/3 [minn~a( -e (n) )  - m a x n = l , 2 ( - e ( n ) ) ] - +  0 as 
/3 ---> oe uniformly for h ~ [�89 23-]. This proves  (3.7) and thus Theorem 3.3. 

M o d e l  3.4.  (Fisher stabilized isotropic classical Heisenberg antiferro- 
magne t  in external field.) The basic Hami l ton ian  is 

H =  (1/2u) ~ s~.s~ - e Z s~'sB - h ~ s~.e (3.8) 

where s~ is a unit three-vector,  the first sum is over nearest  neighbors,  and the 
second is over  next nearest  neighbors.  We will only consider e > 0. As 
already noted, one has formal  reflection positivity abou t  two kinds of  hyper- 
planes. Fo r  this reason, to find the infinite-volume ground-state  energy we 
need only consider configurations with two spin values s and s', one at those 
lattice sites ~ with ( - 1 )  ~ = 1 and the other at the remaining sites. Thus we 
want  to maximize 

- e ( s ,  s') = �89 + s ') .2 - �89 (3.9) 



312 J~rg Fr6hlich, Robert B. Israel, Elliott H. Lieb, and Barry Simon 

A little vector calculus with Lagrange multipliers shows that the maximum 
values and configurations are given by [with sl = (sx, sy)] 

f o r 0  < h < 2 m a x ( - e ( s , s ' ) )  =�89188 s' .2---s.2=lh, 

~forh />2 m a x ( - e ( s , s ' ) ) =  - � 89  s = s ' =  

S• : - - S l t  

(3.1o) 

(3.11) 

We wish to note two things about (3.10)-(3.11): first, the critical value 
o fh  is 2, not 1 as it is in the Ising model. Second, in the case of the plane rotor 
model, this maximum occurs on a discrete set. One can thus prove by the 
arguments in Model 3.2 [using P~(+)  as the projection onto neighborhoods 
of s~  = h/2, s~,~ = + [1 - ( h / 2 ) 2 ]  1/2 and P~(0) the remaining region]: 

T h e o r e m  3.4. Consider the plane rotor model in two dimensions with 
Hamiltonian (3.8) and with �9 t> 0 (�9 = 0 allowed!). For each h, 0 < h < 2, 
there exists /3c(h, �9 so that for /3 >/3o(h, c) there are multiple equilibrium 
states. 

Returning now to the classical Heisenberg model, the above energetic 
calculations and chessboard estimates can be used to show that the joint 
probability distribution of two nearest neighbor spins is more and more 
concentrated on the maximizing set. In particular for h fixed strictly between 
0 a n d 2 a n d a n y � 9  i> 0: 

lira <(s~ - h/2) 2> = 0 (3.12a) 
/3~oo 

lira <[[s~.] - (1 - 1h2)1/2] 2> = 0 (3.12b) 

lira <(s~l + sy• 2) = 0 (3.12c) 
B~co 

for nearest neighbors ~, 7; all limits for the torus state, uniform in A. It  is 
now clear that the model looks very much like a plane rotor model, so in two 
dimensions we expect no long-range order, and suspect that one might be 
able to prove this by a Mermin (4~ argument. In three or more dimensions, we 
do expect long-range order even when e : 0, but we can only prove it f o r  
�9 ~ 0! The difficulty involves limitations in proving RP and the fact that 
i n f r a r ~  bounds require couplings that cross the reflecting planes. For this 
reason, we will require reflection in the diagonal planes, and we therefore pick 
boundary conditions which will respect RP in diagonals (e.g., periodic with 
boxes having sides at 45~ Since we lose reflection in site planes, we Should 
remark that (3.12) can be proven using the chessboard estimates that come 
from diagonal RP. We also note that one can get from any A sublattice site 
to any other A sublattice site by repeated diagonal reflections. 
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We consider 

Z (h~)=  ~ e x p [ - ~  ~ s ~ . s ~ + f i h ~ s ~ . 2  

2 ~ ( s ~ -  s B -  h a -  h~) 2 
(aB)' 

Standard theory (17,11) shows that Z(h~) _< Z (0) if we use reflection in diagonal 
planes. From there it is fairly easy, by following the standard theory, to 
obtain 

2 [ (dvp] 3 
l (s~so)  - II < ~ \ j~=p]  ~(fie) -z (3.13) 

where Ev = v - ~ cos p~, the integral is over IAI <~ ~r, and where e~ is restricted 
to lie on the sublattice w i t h ( -  1) ~ = 1. Conditions (3.12) and (3.13) imply: 

T h e o r e m  3.5. Consider the classical Heisenberg Hamiltonian (3.8) with 
v >_ 3, c > 0, and 0 < h < 2. Then for/3 > tic(e, v, h) the periodic state is not 
mixing and the rotational symmetry about the z axis is spontaneously broken. 

We emphasize that our failure to handle the E = 0 case shows once more 
the limitations of using RP to prove spontaneously broken symmetry! 

M o d e l  3.5. (The Schick-Griffiths model~ Schick and Griffiths (~s) have 
recently studied a model on a triangular lattice, predicting its phase diagram 
by a renormalization group calculation; we will prove part of their structure 
with RP methods. We emphasize that a complete analysis of the phase 
structure in the region where we can only analyze modulo a technical caveat 
is possible using the Pirogov-Sinai theory/43.44) Since this is the first model on 
a triangular lattice we have considered in this series, it is useful to begin with 
some generalities about such lattices, concentrating particularly on reflections 
and chessboard estimates. We begin with the infinite lattice. The triangular 
lattice is the set of vectors in N2 generated by two unit vectors making an 
angle of 60 ~ . If bonds are drawn in linking nearest neighbor sites, the plane 
is divided into equilateral triangles. If  one begins by labeling the vertices of 
one triangle A, B, C, then it is geometrically obvious that one can extend the 
labeling to the whole lattice in exactly one way so that each triangle has one 
vertex of each type. This divides the triangular lattice into three sublattices, 
called respectively the A, B, C sublattices. If we use i to label the "dual  
lattice," i.e., the set of triangles, then A~, B~, C~ will denote the A, B, C vertices 
of triangle i. Clearly the infinite triangular lattice is left invariant by reflec- 
tions in the three sets of parallel lines obtained by extending lattice bonds, An 
important geometric fact about these reflections is that they leave each of  the 
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basic sublattices invariant. This has the important consequence that the 
hexagonal lattice that is obtained by dropping the B sublattice typically has 
the same RP structure as the triangular lattice, and the analyses of models on 
the two lattices are closely related (see Remark 2 below). 

There is some point in describing the above geometry algebraically, 
namely to understand the situation in finite volume. I f  e, f are the two generat- 
ing unit vectors, we use <x, y> to denote the vector xe + yr. The six nearest 
neighbors of <0, 0> are <_+ 1, 0>, <0, • 1>, and < • 1, -7 1>. For  <m, n> c 7/2, 
let ~(<m, n>) be the congruence class of m + 2n rood 3. Then ~(X) = 1 or 2 
for each neighbor of <0, 0>, and thus if the A, B, C sublattices are defined to 
be those with ~(X) = 0, 1, 2, respectively, then neighboring lattice sites are 
in different sublattices. The invariance of the sublattices is easily checked 
algebraically. For  example, if r is reflection in the plane y = 0, then re = e 
and rf  = e - f ,  so r(<x,y>) = <x + y, - y > ,  and thus ~(r<m, n>) = m - 
n ~ m + 2 n m o d 3 .  

Now consider imposing periodic boundary conditions on a rhomboidal 
region like that shown in Fig. 1 ; so, for example, the spins labeled 1 and 2 are 
regarded as neighbors in one row. One has the naive perception that the 
choice of two directions breaks the symmetry of the triangle model under 
rotations by 60 ~ and that no reflection symmetry will be retained since reflec- 
tions in orthogonal coordinates are involved. 

In fact, the naive perception is wrong. I f  one has an L x L rhombus, the 
60 ~ rotational symmetry is always preserved, and one has reflection invariance 
in all three directions as long as L is even; moreover, one has a breakup into 
A, B, C sublattices as long as L is divisible by three. To check these facts, we 
use the algebraic machinery introduced above. The rhombus should be 
regarded as equivalence classes in the lattice (~7/2) modulo some sublattice, 
namely the sublattice SL = {<mL, nL>: m, n ~ 7/}. To see when the A, B, C 
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Fig. 1. Triangular  lattice with per iodic  boundary  condit ions.  
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substructure is preserved we ask when ~(X + Y) = c~(X) for all Yin SL, i.e., 
when (m + 2n)L is always congruent to zero rood 3. This is true if and only 
i fL is divisible by three. In Fig. 1, L = 6 and the A, B, C sublattices have been 
indicated. The rotation by 60 o takes e to f and f to f - e and thus {x, y )  -+ 
( - y ,  x + y).  This clearly leaves SL invariant and thus is definable on the 
quotient space. The same applies to the reflection r above. This means that if 
L is even, there will be reflection symmetry in three directions. For  example, 
in Fig. 1 we indicate the two (!) lines 11 and l~ involved in a typical reflection 
in the nonobvious direction (we say two lines since 2 and 3 are neighboring 
spins and the two dotted segments are really the same segment). In attempting 
to obtain reflection positivity along these lines, ~l+ consists of  the spins on the 
lines and in the regions with spins 4 and 5 (which are neighbors !), and 9.1_ 
is the remaining spins and the two lines. I f  0 is the reflection in line/1, 0 leaves 
the spins in ll fixed but not the spins in/2; for example 0(aa) = a6. This means 
that reflection positivity will fai l-- i t  even fails with no coupling between spins, 
for 0(cra - or0) = - (~3  - ao) and thus ([O(cr a - cro)][~3 - ~o]> < 0. 

Let ( . - . ) ~  be a limit of  periodic states as L--~ co. Since the infinite- 
volume state for uncoupled spins is RP, we would suppose that ( .  �9 �9 )~ is RP 
if the interaction is of the form A + OA. We will thus make a working 
hypothesis that <. �9 �9 )~  is R P  about all lattice lines. Below we will see what is 
implied if this working hypothesis is false. 

To understand the chessboard estimates that hold in infinite volume, we 
begin by abstracting an argument of Seiler and Simon<~7~: 

k e m m a  3.6. Let Y be a compact space and let d/z be a probability 
measure on X = ~x~=_ ~o Y~ with each Y~ a copy of I1. Suppose that d~ is 
invariant under the translation y~-+  y~ + 2, i.e. 

f(Ym, Ym+k) dt* = j f(Ym+ 2, Ym+a . . . .  , Ym+~ + 2) dl~ 

and reflection positive, i.e., fo r f rea l -va lued  on yk, 

f f (Yz  Y~)f(Yo, Y - k  + z) d/z >.> 0 Y - l , . .  m ~ 

f f(Yo,.  . . . . .  dl x >~ 0 

For  g a function on Y, let 

7(g) = lira g(Yra) d/x (3.14) 
m + 1  

Then for gm t> 0 

g~(Ym) dl x <. l--[ 7(g,~) (3.15) 
m =  --M+I m = M + l  
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ProoL By using the Schwarz inequality abou t  the point  m = �89 we can 
suppose that  g: = g - j+1 ,  and by homogenei ty  that  i!g:l]~ ~< 1. Suppose first 
that  M -- 1. Then by reflecting successively in m 3 7 2 n 

- 2, 2 , . . . ,  - � 8 9  
that  (3.15) holds. N o w  suppose that  (3.15) is known for  M = K -  1 and 
consider M -- K. Then by repeated use of  reflection in m = - � 8 9  we see that  

where 

M 

g~(Ym) dff ~ al-1'2"b,, 
m= - M + I  

a = J gM(Y- M + 1 ) " "  g2(Y- ~)g2(Yo) �9 �9 �9 gM(YM - 2) dff 

= hM F[ g l (y , )  d .  
n 

where hM is a product of 2 M  - 2 of the g's and 1-I~ is a product of 2 ~ succes- 
sive sites. By induction, a <~ Flmeo,lT(gm), and clearly since l[hM]] oo ~< 1, bn ~< 
[fFI~gl(y:) dff] u2~. Tak ing  n --> 0% (3.15) results. �9 

N o w  use this l emma on <. . . )~o,  supposing that  it is RP. Let  F ,  be a 
funct ion of  the spins a round  a single triangle a. We reflect successively in each 
of three directions using the lemma.  W h a t  happens  to a single triangle is 
shown in Fig. 2, where r denotes one of  the parallel lines abou t  which one is 
abou t  to reflect. In  the end we get a very large number  of  factors, say k, of  lth 
roots  of  expectat ions of  several parallel arrays of  the type shown in Fig. 3. 
I f  we started with L of  the F's, then we have IL triangles in the k factors. Wha t  

r / F 

/ k / V V  
(a )  ( b )  

(c) (d) 

Fig. 2. Arrays produced by repeated reflection. 
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Fig. 3. Blowup of the array of Fig. 2d. 

cA8 

B 

will be critical is that there are the circled vertices interior to the array and 
that �89 (modulo end effects) triangles have two interior vertices. 

With these lengthy preliminaries out of the way, we can now describe the 
Schick-Griffiths model. Each spin takes three possible values, say a, b, c. As 
usual, P~(a) is the projection onto state a at site ~. Then the basic Hamiltonian 
is 

- H  = ~. (�89 + �89 (3.16) 
~,GA* 

where 

Q i =  PA~(X)PB,(X)Pc,(X) 
x = a , b , c  

R, = ~ PA,(X)PB,(x)Pc,(y) + PA,(X)PB,(y)Pc,(X) + PA,(y)Bs,(x)Bc,(x) 
x r  

That is, of  the 27 possible configurations for a triangle, the three with all 
equal spins have energy - M / 2 ,  the 18 with two equal spins have energy 
-K/2 ,  and the six with three unequal spins have energy 0. It is easy to see that 
H has the form A + 0A for any reflection. We claim: 

T h e o r e m  3.7. Consider the Hamiltonian (3.16). Then under our working 
hypothesis there exists an Nso  that when K < - N o r  K - M < N, the model 
has multiple equilibrium states (multiple states invariant and ergodic under 
those translations leaving the three basic sublattices invariant). If  M > 0, 
there are at least three, if M < 0 at least six, and if M = 0 at least nine (see 
Fig. 4). 

We note that as one increases K with M fixed, one has a situation which 
is very like that in the antiferromagnet as h is increased, so presumably one 
does not have a first-order phase transition. Our method of proof shows that 
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N 

9 sta~esJ 

3 3tat e,~ / ~  

states I No I r f a r m ~ t i o ~  

Fig. 4. Phase diagram for the Schick-Griffiths model. 

on crossing the line segment M = 0, K < - N ,  there is a first-order phase 
transition: indeed our proof  shows that in that region 

whence a first-order transition follows by the Griffiths argument (see Ref. 6). 

Proof  o f  Theorem 3.7. Let us label the 27 states for a triangle, using 1-3 
for the ferromagnetic states (all spins equal) and 4-9 for the six antiferro- 
magnetic states (all spins different). Let P~(k), i e A*, k ~ {1 , . . . ,  27} be the 
obvious projections. We prove below that 

(P , (k ) )  <~ exp[�88 - �88 max(M, 0)] for k /> 10 (3.17) 

By the obvious symmetries of permuting the labels a, b, c and translation 
invariance: 

(P~(1)) = (P~(2)) = (P~(3)); (P~(4)) . . . . .  (P~(9)) (3.18) 

Moreover, when M = 0 there is a special s y m m e t r y ~ :  namely leave t h e  
A-lattice spins alone, permute the B-lattice spins a - +  b - +  c--+ a and the 
C-lattice spins a --+ c -+ b -+ a. Thus 

(P~(1)) . . . . .  <P~(9)) if M = 0 

so that (Pc(l)) ~< ~ for M = 0. Then, since ( ~ = l P ~ ( k ) )  is monotone increas- 
ing in M for K fixed, 

(P~(1)) ~< ~ for M ~< 0 (3.19) 
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Similarly, ( ~  = 4P~(k)) is decreasing in K if M - K is fixed, so 

(P,(4))  ~< { for M / >  0 (3.20) 

Pick N so that  18 exp(1N) < ~6. Then by (3.17)-(3.20) 

(P~(1)) . . . . .  (P~(9)) > 5/54 i f M  = 0, K < - N  

(P~(1)) = (P~(2)) = (P,(3))  > 1/18 if M / >  0, K <  - N +  M 

(P~(4)) . . . . .  (P~(9)) > 1/12 i f M  ~< 0, K < - N  

F r o m  these facts the theorem is proven if we show that  (3.17)holds and for  
some small (calculable) E 

(P~(k)Pj(l)) <~ ~ al l i ,  j ;  k r l, k , I~{1  . . . . .  9} (3.21) 

so long as N is large and K - max(M,  0) < N. Not ice  that  two triangles in 
different states f rom 1 to 9 cannot  have an edge in common .  Thus  if 
Pz(k)Pj(l) = 1, there is a chain of  triangles in states 10-27 connected vertex-to- 
vertex and separat ing i and j ,  as do the shaded triangles in Fig. 5. Such chains 
(of  triangles, rather than line segments) will be considered as " c o n t o u r s . "  In  
the usual  way, (n,13~ (3.21) is proven if we show that  the probabi l i ty  of  a con- 
tour  7 is dominated  by qlrl with q--+ 0 as N - +  or. We are thus reduced to 
proving 

( ly~t~.P~(k(i)))<~exp{b,][ �88188 max(M,  0)]} (3.22) 

for  all k(i) >1 10. Notice that  (3.22) includes the missing est imate (3.17) as a 
special case. To  prove (3.22), we proceed as indicated in the general discussion 
above  until we reach arrays of  the type in Fig. 3. The expectat ion of  such an 
ar ray  is the sum of  all configurations consistent with the configurations in the 
ar ray  determined by f~P~(k(i)) divided by the sum of  all configurations. For  
each te rm in the numera to r  consider the term in the denomina to r  determined 
by the following rules: I f  M i> 0, change the spins at the interior A and B 

A & 

Fig. 5. A contour separating i and j. 
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\ 

I 
/ 

\ 
/ 

? 
Fig. 6. A special boundary condition. 

sites to agree with that on the C sites (which must agree by the method which 
led to the array). If M < 0, change the spins at the interior A and B sites so 
that the interior A, B, C triangles have one of each spin. By this procedure the 
energy is changed by at least �88 max(M, 0) - �88 times the number of interior 
triangles. Since half the triangles are interior, we have proven (3.23). �9 

Remarks. 1. The Pirogov-Sinai method ~3,~4~ shows that the theorem 
holds without any hypothesis on RP for ~...)~o. 

2. We illustrate our remark on hexagonal lattices in the Schick-Griffiths 
model. Consider a model on the hexagonal lattice with three states and pair 
interactions between nearest neighbors with the following energies: M for 
bb; K for ab, bc, aa, cc; and 0 for ac. This is just the Schick-Griffiths Hamil- 
tonian with an additional interaction forcing the spins at B sites to be in 
state b. The analysis above still works; the net result is an analog of Theorem 
3.7 with three, six, or nine states replaced by one, two, or three states. 

3. We wish to remark that so long as there is a unique equilibrium state 
which is translation invariant and invariant under permuting all a, b, c labels, 
then ~. - �9 )~o will be RP. Construct an infinite-volume state by taking a region 
like that in Fig. 6 with periodic boundary conditions. The infinite-volume 
state will be RP about horizontal planes with all the symmetries guaranteeing 
uniqueness. Thus if our working hypothesis fails there must be multiple 
equilibrium states with all the above symmetries. 

4. H A R D - C O R E  L A T T I C E  G A S E S  

By a hard-core lattice gas, we mean the system on a regular array with 
configurations of "occupied"  sites. Two sites with Ic~ - /3[ ~< d cannot both 
be occupied, and the statistical weight of a configuration with N sites occupied 
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is z N. The only parameter of the theory is z. The first basic question concerns 
whether there are nlultiple equilibrium states for large z. 

Mode[  4.1. (Nearest-neighbor, hard-core square lattice gas.) We work 
on a unit square lattice and take d = 1. We will recover the result of Dobru- 
shin (5~ that there are multiple equilibrium states if z is large. 

Let ~ = + 1 ( -  1) correspond to site c~ occupied (resp. unoccupied). We 
first claim that the interaction is RP about any lattice line. Since the statistical 
weight is just 

lim e x p [ -  ~ J ( ~  + 1)(u e + 1) + ln z Z  �89 + 1)] 
3 

this follows by our general analysis of interactions which are finite. By 
Theorem 4.3 of Ref. 11, for nearest neighbors c,,/~ in a 2L x 2L lattice 

<P.(-)PB(-))  <- ~ <P~(-)Pe(-)P,(s)P~(t)> 
s = ~ l  
t = •  

~< (l/z'Al/2)l/~21AI~ + 2(ZIA'/~iz'~ES2) I/~2I~l~ 
~< 3 max(z- 1/4, z -  z/8) 

where ~,/?, 7, 3 form a square. 
Since <P~(+)> = <P~(+)> and <P~(+)PB(+)) = 0, we see that 

<P~(+)> >1 �89 - 3z -~/8) for z > 1 (4.1) 

Next we claim that for c~, ~, in different sublattices 

<P~( + )P~( + )> <~ e(z) (4.2) 

with e --+ 0 as z ~ oe. This and (4.1) imply absence of mixing and existence of 
multiple equilibrium states. To prove (4.2) we let p be a neighbor of V and 
note that P~(+) ~< P~( - ) .  Thus (4.2) follows from 

<P=(+)P~(-)> <~ e(z) (4.3) 

for ~,/3 in the same sublattice, say A. [Notice (4.3) is a direct statement of 
long-range order]. To prove (4.3), given any configuration we fill in the 
squares formed by joining together the nearest neighbors of each occupied 
A-lattice site. (These squares have sides which are diagonals of the basic 
lattice unit square.) The contours are connected components of the boundary 
of the resulting filled-in region. As usual, (4.3) follows from 

(probability of contour ~,) ~< [3(z)] I~t (4.4a) 

with ~ ~ 0 as z ~ oe. We will prove (4.4a) with 

8(z) = z-  ~/~ (4.4b) 



322 J0rg Fr6hlich, Robert B. Israel, Ell iott H. Lieb, and Barry Simon 

To prove (4.4), let l be a line in y. Since l is on a boundary, the square A con- 
taining l has one occupied and three vacant sites. Thus if Pz is the projection 
onto this configuration 

(probability of y) ~< ~ P t ~  ~<(Q)  I~HAf 

where Q is the universal projection obtained by using Theorem 4.3 of  Ref. 1 1, 
i.e., Q has every lattice site with both coordinates even occupied, and all other 
sites vacant. Thus 

(Q) <~ zial/4/ziar/= 

proving (4.4). 

M o d e l  4.2.  (Nearest-neighbor, hard-core triangular lattice gas.) We now 
work on the unit triangular lattice with d = 1. As in Model 3.5, we suppose 
that ( .  - . )~  is RP. By the analysis of Model 3.5 and the fact that in an array 
of Fig. 3 with all sites empty we can gain a factor of z ~ct~i~ngle~/8 by filling in the 
interior A sites (there is one such site for every eight triangles), we have for 
c~, 5, Y forming a triangle 

( P . ( - ) P a ( - ) P , ( - ) )  <~ z-1/8 
so that 

( P . ( + ) >  >/�89 - z -1/~) 

As in Model 4.1, we need only show that for ~,/3 in the A sublattice 

O ' ~ ( + ) e e ( - ) >  .< ,(z) 

with e --> 0 as z -+ oe. Given a configuration, we fill in the hexagons formed by 
all triangles with an occupied A vertex. Contours are again connected com- 
ponents of  boundary. Each edge J of a contour is associated to a unique 
triangle i(J) with ~A,(,~ = -- 1. Thus 

(probability of contour y)~< ~ i I~  P&cs,(-)PB..,(-)Pc,c.,(-) 

< (Z- 1/8) [yl 

as above. Modulo the hypothesis on ( - . . )o~ being RP, we have proven the 
(25) existence of at least three equilibrium states, a result of Heilmann. (Without 

that assumption, we can only conclude that there are at least two states.) 

M o d e l  4.:3. (Nearest-neighbor, hard-core hexagonal lattice gas.) We 
now work on the unit hexagonal lattice with d = 1. Thinking of this as the 
triangular lattice with % = - 1 for c, in the B lattice, we can follow the above 
analysis directly. Contours are defined as in Model 4.2 and 

(probability of y) ~< z -  1/<71 
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still holds. The only difference is that <P~(+))  /> �89 - z 1,,8) for ~ in the A 
or C sublattice. We have at least two states, a result of Heilmann. ~25~ 

We summarize the last three models: 

T h e o r e m  4.1. The hard-core, nearest-neighbor lattice gas on the 
square, triangular, and hexagonal lattices have at least two equilibrium 
states for large z, and, for the square lattice, long-range order. If  (- �9 . )~  is 
RP in the triangular and hexagonal lattices, there is long-range order in those 
cases and at least three states for the triangular lattice. 

M o d e l  4.4.  (Next-nearest-neighbor, hard-core square lattice gas.) This 

is the model on the square lattice with d = ~/2. It  is still RP with respect to 
reflection in lattice lines, but not with respect to diagonals. The basic chess- 
board estimate is thus Theorem 4.3 of Ref. 11. One can still at tempt to define 
contours with the basic " b l o b "  being a square with side 2 and sides parallel 
to the original lattice. However, one can no longer identify the necessary 
four-spin blocks of  minus around a contour; indeed, one can see that only 
corners of contours count. This fact suggests that the analog of this model in 
three or more dimensions has multiple equilibrium states. In two dimensions, 
one can easily find an infinity of states of finite energy breaking the long- 
range order. This suggests no multiple states, which is the conventional 
wisdom. 

M o d e l  4.5. This is the model on the square lattice which results if one 
thinks of an occupied site as being the shape shown in Fig. 7. Thus pairs with 

d = 1, ~/2, 2, V'5, 3, and ~/]-0 are not allowed but d = 2~/2 is. One can 
develop a contour analysis about sites (n, m) with n + m - 0 rood 4 and 
thereby see that there are four ground states and the Peierls condition of 
Pirogov and Sinai ~2-44~ holds. By their theory, one gets four states at large z. 

�9 �9 ~ , 

Fig. 7. Hard core for Model 4.5. 
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Our method yields no information since the model has no RP. We see once 
again the limitations of RP methods! 

M o d e l  4.6. (Widom-Rowlinson model.) The basic lattice is the square 
lattice. At each site there are three possible states A, B, or 0 ( =  vacant) with 
the constraint that one cannot have A and B at nearest neighbor sites. The 
weight of a configuration is z m with m the number of sites with A or B. The 
applicability of naive contour arguments is due to Gallavotti and Lebowitz, <2~ 
with recent simplifications by Bricmont et al. <3~ With RP methods it is 
effortless to prove: 

T h e o r e m  4.2. The Widom-Rowlinson lattice model has multiple 
phases for z large, and long-range order with P~(A) - P~(B) as order param- 
eter. 

Proof. RP in lines containing lattice sites and bonds holds as in Model 
4.1. By considering the 17 possibilities for filling in a square with one corner 
vacant, one sees for z > 1, 

<P~(0)) ~< 17z -1/~ 

so by symmetry P~(A) = P~(B) --+ 1/2 as z --+ oe. Thus we only need to show 
that <P~(A)P~(B))-+ 0 as z--+ oe. Draw a contour of conventional type 
between dual lattice sites by filling in a square about every vacant site. I f  
and 7 are occupied by different species, a contour must separate them. For 
every dual lattice site on a contour, the corresponding square has at least one 
vacant and one occupied site. Thus (again counting possibilities) 

(probability of;e) ~< (5z-1/4) I~l �9 

Romarks. 1. The above proof  works if there is also next-nearest-neighbor 
AB exclusion, but longer range exclusion destroys RP! 

2. Unlike the naive approach, (3,2~ we do not need A - B  symmetry for the 
contour argument. For example, if in addition to the AB exclusion one has a 
Hamiltonian 

J ~ P~(A)PB(A ) - tZA ~. P~(A) -- IxB ~ P,(B) 
(c~B> 

one can easily show that for J,/xA fixed and/3 large there is a/~B(/3) --+/~a -~ 2J  
as/3 -+ oe at which two phases occur. As usual, the Pirogov-Sinai method also 
yields these results. 

5. C O U L O M B  LATTICE GASES 

Thus far, there have been a number of places where we emphasized the 
limitations of RP methods. In this section, we discuss examples which 
illustrate the opposite side of the coin. Indeed, the results in this section are 



Phase Transit ions and Ref lect ion Positivity. II. 325 

all new and we do not know how to obtain them with any other methods, for 
all other methods require contours whose width is the range of the interaction, 
which is infinite here. In contrast, we will use RP methods and a width-two 
contour. 

In all the models, we will suppose that our lattice is Z ~ with u = 3. It  is 
easy to extend the method to v I> 3. One can treat the classical case of v = 2 
by replacing the Coulomb potential by a Yukawa potential of mass t~ and 
then taking tz ~ 0. The sole effect is to suppress all nonneutral configurations. 
In all the models, it is easy to check stability of the energy essentially because 
the point charges of a lattice Coulomb gas can be replaced by spheres with 
finite self-energy. For a proof  that a sensible thermodynamics exists, see Refs. 
14 and 15. 

M o d e l  5.1. (Coulomb monopole, plus, minus charges.) At each site we 
have a charge ~ = + 1 and the Hamiltonian is H = ~r -- /~l -~" In a 
periodic boundary condition box, there is some care needed: only neutral 
configurations have finite energy, and Hpe~(cr) is defined by extending the 
configuration in A periodically and letting 

Alternatively 

HW~(cr) = lira 1 
a,/3ELA 

= (5.1) 
peA* 

where as usual ~, = I A]-  1/2~eia'P~rc~ and Ep is (2~) a/~ times the Fourier trans- 
form of ~ 0 ] ~ 1 - 1 8 ( x  - c0. The Ep can be evaluated by the Poisson summa- 
tion formula as ~ f ( p  + 27r/3), where f (p )  = p -  2 _ f ( p  _ l ) - 2 2 ( l )  dSl, with 

2 a function whose Fourier transform vanishes for Ix I > 1 and f2 ( l )  d3l = 1. 

Notice that f falls off faster than any power, so the sum over ~ is convergent. 
We claim next that this model is RP under a 0 obtained by reflecting in a 

plane and changing the sign of the charge. By the basic machinery of Section 
3 of Ref. 11, this follows if we show that for any charge configuration r on the 
right side of  the plane ~1 --- 1/2 and the configuration l obtained by reflecting 
and sign shift we have that 

- - 8 1 - 1  0 
al>t -  
Bl<t" 

This, in turn, follows if we prove the stronger result 

p(x)p(y)lx - > 0 (5 .2 )  
1>0 

~/1<0 

if p ( - x ~ ,  x2, xz)  = p(x l ,  x2, xa). The result (5.2) is well known (see, e.g., 
Section 5 of  Ref. 11). 
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Remark. The nearest neighbor antiferromagnet has the same RP, so one 
can ask if the present model is RP under reflection in lattice planes.'The answer 
is no. This can be seen as follows: if it were, one would have the chessboard 
estimate, Theorem 4.3 of Ref. 11, so that the probability p of eight neighbor- 
ing plus charges would be dominated by q = (Q)I/IAI, where Q assigns a plus 
charge to each site. But q = 0 by the requirement of overall neutrality, while 
clearly p > 0. 

To find the ground states, we need only consider configurations which 
alternate signs in two directions and are a two-unit reflecting sequence in the 
third direction, i.e., xy means . . . x y - y - x x  y - y - x . . . .  The two 
possibilities are given in the first column of Table I I I  with tz, a parameter of 
Model 5.2, set to zero. In this case a = 1.74756459, b = 1.6170762, c = 
0.84116805 (c is irrelevant in this model), a is just the constant computed by 
Madelung in his famous paper. {aS> We have evaluated b and c using Hund's  
method(2g> and the tables in Ref. 45. For additional discussion of Madelung 
constants, see Refs. 31, 52, and 54-57. For  the case at hand, all that matters is 
that a > b. We will show that this implies: 

Theorem 5.1. The ~ = + 1 Coulomb monopole gas has at least two 
equilibrium states at large/3. 

Proof. As usual let P , ( + )  be the projection onto cr = + 1. Clearly, by 
symmetry ( P , ( + ) )  = ( P ~ ( - ) )  = 1/2. Thus we only need to show that 

s u p ( P ~ ( + ) e 6 ( -  ( -  1)l~-6E)) -+ 0 
C(,d 

as/3 -+ 0% i.e., there is long-range order favoring equal spins on the A sub- 
lattice and the opposite spins on the B sublattice. Draw contours by placing 
square faces between neighboring spins of the same sign. I f  the contour 7 
has ]7[ squares, then the probability of 9' is dominated by a product of I71 
projections P~, each one the projection onto two neighboring equal spins. 
There are three directions in which the axis between the neighbors may point 
and two possibilities for whether the A site is to the " l e f t "  (" above"  o r . . . )  
of the B site. By picking the combination that occurs most  often, we obtain a 
bound on the probability of 7 which has at least 17]/6 projections, all of the 
same type, say A on the left, B on the right. Using a chessboard estimate with 

Table III 

n Block - e ( n )  n Block - e ( n )  

1 + - -  a + ~  
2 + +  b + ~  

3 + 0  c + �89 
4 0 0  0 
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a single unit in two directions and a double unit in the thirdl we get prob(7) ~< 
~1~1, where ~ = exp[~/3(b - a)], which implies the result. [ ]  

M o d e l  5.2.  (Coulomb monopole  gas;  + ,  - ,  0 charges.) The model  is 
the same as in Model  5.1, except that  now e~ can take the values _+ 1 or 0. 
N o w  H is ~ . B ; ~ B ~ r B I ~  -- /3 I-1 _ /~ ~ ]~] ,  SO with z = e B" we have a 
Coulomb gas with fugacity z. Now the relevant energies are given by the four  
entries in Table III .  For  ~ large, indeed for ~ > - a ,  we have two phases at 
low temperatures essentially by the argument  in Model  5. I supplemented by 
the fact that  

(P~(0)) ~< exp[ - /3(a  + /x)] 

by a chessboard estimate. An interesting feature takes place near tz ~ - a .  
Notice that  2c < a, so that  for /z ~ - a ,  c + �89 < a + /x .  By a contour  
argument  of  the type in Model  5.1, we can make 

(P~(+)[P,(0) + P , ( - ( -  1)~-~)]) 

small so long as exp{-C3[e(2) - e(1)]} and exp{-/3[e(3) - e(1)]} are both  
small. This will hold uniformly for tz ~ ( - a  - ~, - a + ~) (~ small) if/3 is 
large. By the strategy of  Section 1.3, we find tz(/3)-+ - a  as/3--+ c~, so that  
there are three phases at fugacity z = e ~u(~. Two phases are like those of  
Model  5.1 and can be thought  of  as "c rys t a l "  phases. One has mainly empty 
sites and can be thought  of  as a "p l a sma . "  We summarize with: 

Theorem 5.2.  The Coulomb monopole  gas with a~ = _+ 1, 0 has at least 
three phases for/3 large and suitable fugacity z(/3). 

We are indebted to David Brydges for having checked that  his p roof  of  
Debye screening (~ also applies to the lattice Coulomb gas, provided the 
activity is sufficiently small and the temperature is sufficiently large. Thus, we 
conclude that  the lattice Coulomb gas has a single-phase region with exponen- 
tial clustering apart  f rom the two- and three-phase regions exhibited in this 
paper. 

M o d e l  5.3. (Monopole  gas with a lattice Coulomb potential.) In the last 
two examples, it appeared that  numerical relations among  Madelung con- 
stants played a significant role. We want  to show that  this is no accident by 
considering a more  general model. A special case o f  particular interest of  this 
more general model  is the lattice Cou lomb potential, 

1 fl,d ~,(3 V(~ - / 3 )  - (2zr)a ~ - cosp~ - cosp2 - c o s p 3 ) - l e  ~p'(~-~ d3p 

(5.3) 
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Other  examples  would include the lattice Y u k a w a  potential  [replace 3 in 
(5.3) by 3 + t, 2] and the con t inuum Y u k a w a  potential  restricted to lattice 
sites. Our  Hami l ton ian  is now 

g = ~ V(~ - ~ )~a~  - ~ ~ la~l (5.4) 
c(,/3 cc 

where V is assumed RP, i.e., 

e j ~ v ( ~  +/3~ - 1, ~ - ~ ,  ~ - / 3~ )  > 0 (5.5) 
a l ) l  
BI>--1 

For  simplicity, we also suppose that  V(%,  %, %) is symmetr ic  under permuta-  
tions of  al,  %, %. As in Model  5.1, we have reflection posit ivity under  
% - +  - a r ~ .  By general principles, (11) the periodic state is RP also. Let 12 be 
the Four ier  t r ans form of  V normal ized by 

1 / ,  
V(a)  = ~55Jlp, l .< ~ 12(p)e ip'~ d3p (5.6) 

In finite volume A, one finds tha t  (see Ref. 1 1) 

HA(a) = ~ 12(p)@~_~ (5.7) 
p E A *  

where @ = [A 1-1/2V~A d~a~ and A* is the dual set o f p ' s  to ~ ~ A. I f  we 
consider the configurat ion corresponding to state 1 of  Table II[ ,  i.e., % = 
( - 1 ) q + % + % ,  we find that  ~p = IAI ~/~ if each p~ = +Tr and 0 otherwise. 
Thus  

a = - 120r, % ~r) (5.8a) 

[In the sum over  A* only one point  of  ( +_ 7r, _+ ~r, +_ ~r) enters, i.e., these are 
equivalent  p 's ,  and in part icular  12(+ ~r, + rr, + rr) = 120r, ~r, ~r)]. For  the 
configurat ion corresponding to state 2, we find that  ~p = 11A1"=(1 -7- i) at 
p = (rr, + ~r/2, ~r) and zero at all nonequivalent  points. Thus,  noting that  
12(-7r/2, rr, rr) = 12(rr/2, - T  r, -7r)  (by reality of  V) -- 12(rr/2, 7r, ~r) (since ~r 
is equivalent  to -~r),  we see that  

b = - V(rr/2, rr, rr) (5.8b) 

For. the configurat ion corresponding to state 3, we have ~p = �88 1/2( 1 + i) 
for  p = (+7r/2, ~r, ~r), }IAI ~/2 for  p = Or, rr, 7r) and zero for  nonequivalent  
points. Thus  

c = _ 1 r  ~, ,~) _ �88 ,~, ~) (5.8c) 

We see that  a, b, c are not  independent ,  since 

4 c = a + b  
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which can be checked for the Madelung constants! In particular, the two 
critical inequalities 

a > b, a > 2e (5.9) 

are equivalent to the single inequality 

V(~, ~, ~) < V(,ff2, ,~, ,,) (5.10) 

We claim that  (5.5) implies (5.10) so long as V--> 0 at infinity and V ~ 0. 
For,  let 17(n) be the Fourier  t ransform of V(n, m, 1) in the m, l variables 
evaluated atp2 = Pa = ~r. Then (5.5) implies that 17(n) is RP as a one-variable 
object. Thus,  by the general theory (11) 

17(n) = dp(a)a I=1-1, In I /> 1 
- 1  

for some positive measure dp. It follows that  (up to a constant  which can be 
absorbed into the definition of  t?) 

17(pz, rr, rr) = co + 2dp(a)(cos p,  - k)/(1 + k 2 - 2 t  cos p , )  
1 

so that  (5.10) follows from 

- ( a  + 1) -1 < -A/( ,V + 1), for I,~l < 1 

and the fact that  c/p cannot  be concentrated entirely at + 1, since 17(n) ---> 0 
at Go. We have thus proven:  

T h e o r e m  5.3.  The conclusions of  Theorems 5.1 and 5.2 remain true if 
the Coulomb potential  I~ - 51-* is replaced by V(c~ - / 3 )  for  any V obeying 
(5.5) and not  identically zero. 

Alternatively, inequalities (5.9) with > replaced by > follow directly 
f rom the chessboard estimates (e.g., the probabili ty of configuration 3 of  
Table III in some finite volume is dominated by the geometric mean of  1 and 
4, so c > �89 In fact, if we check the conditions required for the Cauchy-  
Schwarz inequalities used to obtain chessboard estimates to be equalities, we 
find that  this would require V - 0. 

Finally, we should prove that the lattice Coulomb potential obeys (5.5). 
Letting 17(n, P2, P3) be the partial Fourier  t ransform of  V, we see that  (5.5) 
is equivalent to IT(n, P2, Pa) being RP in n for each fixed P2, Pa, since 

LHS of(5.5)  = ~ (#~l~p~we,p2palP(e, + /3 ,  - 1,p2, pa) dp2dpa 
J 

,81/>1 

with 

w~lv2~ 3 = const ~ z~ exp[i(p2% + Pa%)] 
C~2Cr 3 
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Thus, by the one-dimensional theory, (11) (5.5) holds if and only if 

V(pl,P2,P3) = c(p2,p3) + 2 i 1 dp(2`,p2,p3)(cospl - A)/(1 + 2̀ 2 _ 22` cospl )  
d -  1 

(5.11) 

Letting 2`o(P2, P3) be defined by �89 + 2`ol) = 2 - c o s p 2 -  cos P3 with 
0 < 2̀ o < l, and choosing 

dp(2`, P2, Pa) = [22`o/(1 - 2,02)] 3(2` - Ao), c = 2/(1 - 2`02) 

we find that IT(pl, P2, Pa) = (3 - cos P1 - cos P2 - cos P3)- 1 has the form 
of  (5.11), verifying that  the lattice Coulomb potential is RP. Our  choice of  c 
and dp will seem less mysterious if one notes first that  

2(cospl  - 2`)(1 + 2̀ 2 _ 22`cospt)-1 = _2`-1 + (I + 2̀ 2 _ 2Acosp~)-l(1 _ 2`2) 

Model  5.4.  Consider a Coulomb lattice gas as above, but allow also 
charges of, say, + 2, with a different chemical potential (/xl for _+ 1 charges and 
~2 for _+ 2). By the same techniques used above, plus the strategy of  Section 
1.6, we find that  for sufficiently large/3 and some t~l(fi) ~ - a  and ~2(/3) -~ 
- 4a there are at least five phases:  two "c rys ta l s "  o f  mainly + 1 charges, two 
more  "c rys ta l s "  o f  mainly + 2, and a "p l a sma . "  

M o d e l  5.5.  (Dipole gas.) We wish to note that Frdhlich and Spencer (19) 
have used methods related to those above to prove phase transitions in a model  
of  lattice dipoles where each dipole is required to lie in one of  the four  
positions pointing toward a nearest neighbor. 

Model  5.6.  (Quantum monopole  gas; following Frdhlich.) (~~ We con- 
sider a quan tum model  where one can place either of  two fermions at each 
lattice site, one with charge + 1 and one with charge - 1. We will show that  
at suitable temperatures and "fugacit ies ,"  crystals form, i.e., there is long- 
range correlation for having opposite charges on the even and odd sublattices. 
For  simplicity, we work in v /> 3 dimensions and exploit infrared bounds.  In 
two dimensions with a Yukawa  potential, one can prove similar results using 
the method of  "exponent ia l  localization."(~a) With minor  changes, one can 
accommodate  general RP potentials and/or  bosons with hard cores (i.e., no 
more  than one particle allowed at each site) in place o f  fermions;  indeed, 
many of  the complications in the fermion case are absent for bosons. 

We begin by recalling a few facts about  fermion systems with m < 
degrees of  f reedom (in our  case m will be 21Al). There are rn operators 
~b 1 . . . .  , ~b m on C M (M = 2 m) obeying 

{~b,, ~bj*} = 3,j (5.12a) 

{~b~, ~by} = 0 (5.12b) 
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where {A, B} = A B  + B A  is the anticommutator.  All sets on C M obeying 
(5.12) are unitarily equivalent. The existence and uniqueness questions for the 
relations (5.12) are standard;  see Ref. 48 or the remarks below. Define 

n~ = ~b~*~b~ (5.13) 

Then (5.12) implies that  

[n~, ~by] = 0 (i =fi j ) ;  n~b~ = (n~ - 1)~b~* = 0 

Since (5.12a) implies that Ran ~b~ + Ran ~b** = C v, we conclude that  n, has 
eigenvalues 0 and 1 only and that  Ran ~b~ • Ran ~b~*. Two families of unitaries 
are important:  first let 

Then 

and 

Second, let 

Then 

and 

u~ = ( -  1)", (5.14a) 

u~tfijui -~ = ~bj ( j  g= i); u~b, ui -~ = -~b~ (5.14b) 

u, 2 = 1; u,u i = uju,;  u~* = u, (5.14c) 

v~ = ( j.,I~[1 u,) ((~b~ + ~b~* ) (5.i5a) 

v,@v; -1 = ~bj ( j  # i); v~b~vi -1 = ~b~* (5.15b) 

vi 2 = 1; v~v~ = - v j v ~  (i C j ) ;  v~* = v~ (5.15c) 

We will need two additional properties of  the ~b~: 

Proposition 5.4. (a) The ~b, have a simultaneous real matrix representa- 
tion in which n~, u~, v~ are also real. 

(b) The 22m operators ~b~(~bl*)~l - . .  ~b~m(~bm*)% with each a~ and b~ zero 
or one, are linearly independent and span Hom(CM). Moreover, 

Tr(~b~i@l*)q...) = ~ [(1 - �89 Barb,] (5.16) 

R e m a r k .  Part (b) implies in particular that  any map between two families 
obeying the CAR (5.12) extends to an automorphism of the corresponding 
algebras and thus is unitarily implemented since every automorphism of  
Hom(C u) is so implemented. This yields a proof  of uniqueness for the CAR;  
existence is proven in (a). 

P r o o f .  (a) Write C M as the m-fold tensor product  C 2 |  @ C ~. Let 
n~=  1 | 1 7 4 1 7 4 1 7 4  (n is the ith factor) with n = ( 0  ~~ so that  
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u~ = ( - 1 ) ~ , =  1 | 1 7 4 1 7 4 1 7 4  wi thu  = ( - ~ ~  = 1 | 1 7 4  
| 1 7 4  1 with p = (000). Then n~ =p~*p~, {Pc, P~*} = 1, and [ p ~ , p j ] =  
[p,, pj*] = 0 (i r j ) .  To get the full CAR,  we employ a Jo rdan-Wigner  trans- 
format ion and let 

(b) Let C = ~b~l(~bl*)bl . . .  @~m(@m~)brn. I f  a~ r b~, then ukC u;  1 = - C ,  so 

Tr(C)  = T r ( - C ) =  0. Since the n~ commute  and v j n , v ; ~ =  n i ( i  r  

vjnjv 7~ = 1 - nj, we see that  any product  o f  (n~ - 1)'s has zero trace for the 
same reason, so that  (5.16) holds. N o w  let Aj = ~bs + ~bj*, Bj = i-  l(~bj - @*). 
Relat ion (5.16) and the commuta t ion  relations among  the A's  and B's imply 
that  the operators A ~ i B ~ I . . .  are or thonormal  in the trace inner product  
(C, D) = Tr(C*D).  They are thus independent, so that  the ~b~. . . ,  which 
have the same span and as many  elements, are also independent. That  the 
span is H o m ( C  v) follows f rom counting dimensions. [ ]  

With these preliminaries out  of  the way, we can describe the model  and 
analyze it. In  finite volume A C 7/~, we take m = 2IA I and label the ~b's as 
{~b~ • }~a. We let 

q~ = n~ +~ - n~ -) (5.17a) 

T = -  E (~*~bB + ~*~b~) (5.17b) 
(a ,B)  ~ A 

the sum being over nearest neighbor pairs. We will take in a torus A 

H a  = T +  ~ V(a'(c~ - ~)q,qB - I* ~ ,  q 2 (5.17c) 
cr ccEA 

where V is the periodic Coulomb potential and T has periodic boundary  
conditions. The T in (5.17b) is just  the second quantization o f  - 2 ~ I  - A, 
where A is the lattice Laplacian. It  describes " h o p p i n g "  between neighboring 
sites. Often one describes these kinds o f  models with the sign of  T reversed. 
Since T and - T  are unitarily equivalent under  U = I ~ a  .. . .  u~+u= - with 
Uq~U- ~ = q~, the models are equivalent. Our  choice o f  the sign is convenient 
since it makes T look "fer romagnet ic ."  We aim to prove:  

T h e o r e m  5.5. For  some /3~,/x~ the model  (5.17) has staggered long- 
range order f o r / ,  >/ /,~,/~ /> /3~ in the sense that  for such/ , ,  3 and ( .  �9 - ) an 
infinite-volume state 

(p (q~  __ 1)P(qB = (_I)I~,+,B,))  > 1 

uniformly in a,/3. 
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The first step of  the proof is familiar from other models with staggered 
long-range order, such as the antiferromagnet; namely we flip spins on the 
odd sublattice. Thus let v be given by (5.15) and define 

U =  ~ v~+v~ - (5.18a) 
~Aodd 

/7 = UHU -~ (5.18b) 

Then, since Uq, U -~ = ( - l f " l q , ,  

/ 7 =  ~ + ~ W(cc - 3)q~qe - t~ ~ q2  (5.18c) 
g,BaA tz~A 

where (for each nearest neighbor pair @, fi), c~ is the even one) 

7 ~ = - ~ (~b~*~b~* + ~bB~b,) (5.18d) 

and 

W(,  - / 3 )  = ( - 1 )  '~-~1V(~ - / 3 )  (5.19) 

We are thus reduced to showing that the /7  model has long-range order in the 
unstaggered sense. The kinetic energy term in /7 is already in a "ferro-  
magnetic" form. To see that the W term is also, we note: 

P r o p o s i t i o n  5.7.  Suppose that V i s a  function on E ~ which is RP with 
respect to reflections between lattice sites. Then W(~) = ( -  1) I~j V(e) is RN. 

Proof. Let r ( ~ , . . . ,  c~) = (1 - ~,, ~2 , . . . ,  ~ )  for ~ /> 1. Then for any 
C~ ~ 

V(~ - r3)?~c e >>. 0 (5.20) 
~i~> 1 
/31~> 1 

Let d~ = ( -  lf~lc~, so that 

since I~ - r3I-= 1~[ + [31 + 1 (rood2). Thus (5.20) implies that W is 
RN. �9 

The general framework of Ref. 1 1 for quantum systems required dis- 
tinguished algebras 9-1+ and 9.1 and a morphism 0: 9.1+ -+ 9.1. The machinery 
worked smoothly if 92+ and 92_ commute. For  this reason, we make a pre- 
liminary Jordan-Wigner ( =  Klein) transformation to make the left and right 
commute. Thus we suppose that A consists of sites e with ~1 = - L  + 1 . . . . .  
L. For az i> 1, let q~• = ~b~ ~ and for ~z ~< 0, let q~• = (~- 1)z~,~b~ a, where 

N R =  ~ q ~  
Cr 
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So  

( - -  I)NR z ~ - ~  bl +Uo; - 

Notice that  n~ • = ( r162177  and that  

~q = ~L + ~ + ~ + ~ w(~ - ~)qoq~ - ~ ~, q~ 

where (with - the even member  of  the pair @~)) 

;~ = _ ~ (r162 + r162 
(c~,B> 

al,B 1 ~ 0 

<c~,Z> 
gl,Bl) 1 

;?LR = -- ~,  [r 1)N~r * + Ce(-- 1)N~r 
(~,Z) 

KI~ 1,~1~ Oor ~i~ 0,~1~ 1 

Let ~L (resp. ~IR) denote the real algebra generated by (r r with ~ ~< 0 
(resp. a~ /> 1). Motivated by the formula for iPLR, we define 0:9.1L ~ ~.1R by 

0(r = r  1)N~ if (--  1) I"l = 1 (5.21a) 

0(r = (-- 1)NRr if (-- I) l~t = -- 1 (5.21b) 

using Proposi t ion 5.4 to extend 0 to a *-automorphism (to be able to do this 
one needs to check that  the image under  0 of  the r obeys the CAR). The 
asymmetry in the definition of  0 comes f rom the fact that we have taken 
r +-+ Ce* for ( -  1) lel = - 1. 

With this definition of  0, O(n~ • = n~ and by (5.16), for  any A e 9.1L 

Tr(0(A)) = Tr  A (5.22) 

By Proposi t ion 5.4(a), Tr  is real on 9.1, the real algebra generated by ~IR and 
~.1L. Finally by (5.21), - / t  has the form A + OA + ~ B~O(Bz), so by the 
general theory (6,11) ( . . . )  is RP and moreover  

Z(h~) <~ Z(h~ - 0) (5.23) 

where 

Z(h~) = Tr exp ] -  
L 

1 
+ ~ W(c~ - fl)(q~ - h~ - q~ + he) 2 + t ~ ' ~ q 2 ]  

with t~' defined so that  when h~ - 0, Z(h~) is the part i t ion function f o r / I .  In 
the usual way (6,11) (5.23) leads to an inequality in the Duhamel  two-point  
function (for k ~ 0) 

(el(k), e l ( -k ) )  ~< - [2fiW(k)]-i  (5.24) 



Phase Transitions and Reflection Positivity. II. 335 

The proof of Theorem 5.5 is completed as follows: If  long-range order 
is not present, then by (5.24) 

(qo, qo) ~< �89 

for/3 large. A contradiction is obtained by using the Falk-Bruch inequality 
if we show that 

(qo 2) -+ 1 (/3, ~ large) (5.25) 

and 

([qo, [qo,/711) -+ 0 (/3,/z large) (5.26) 

By a direct calculation [qo, [q0,/7]] is a multiple of 

(~,B) 
a = O o r B = O  

and this has small expectation between all states with (qo2> and <q2) 
([aI = 1) close to 1. Thus (5.25) implies (5.26). 

Condition (5.25) can be proven either by thermodynamic considerations 
or by a chessboard estimate. Here is the thermodynamic proof. As above, 
write 

- / 7 =  - ? +  ~ W ( ~ - / ? ) ( q ~ - q B )  2 + / ~ ' ~ q 2  

with ~' = ~ - const. Since Wis RN, the maximum value of -ZW(c~ - p) • 
(q~ - qB) 2 occurs with all q, equal, i.e., it is zero. Thus 

(- /7/[AI)  <. td(qo ~) + 2v (5.27) 

On the other hand, using 

Tr(1) = 4 l•i 
and 

Tr(exp [ -  flH(/d)]} ) exp( -  fi(at/7[a} ) 

(where a is the state with all q~ = + 1) and convexity of In Tr e -B, we see 
that 

(_/7/[AI > i> tz, _ fl-1 ln4  (5.28) 

Then (5.27) and (5.28) imply that 

(q02) /> 1 - (/z') - 1/3-1 In 4 - 2(/ ;)-  iv 

proving (5.25). This completes the proof of Theorem 5.5. [ ]  

6. SDX- A N D  E I G H T - V E R T E X  M O D E L S  

In this section we will discuss several aspects of planar six- and eight- 
vertex models in zero external field. We remind the reader that for these 
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models ,  the free energy is known exactly (33-35,51,~ (for a comprehensive  
review of  the six-vertex models  see Ref. 37). We will leave extensions to 16- 
vertex models  and to higher dimensions to the reader 's  imaginat ion!  

The  " s p i n s "  in this model  are assignments  of  a direction (or arrow) to 
each bond  of  a square lattice. Of  the 16 possible configurations at each lattice 
site only the first six (resp. all eight) of  those pictured in Fig. 8 are allowed. 
The basic Hami l ton ian  is 

6(8) 

H = ~ N~e~ (6.1) 
i = 1  

where N~ is the number  of  vertices of  type i. 

M o d e l  6.1.  (Six-vertex F-model ;  el = e2 = e3 = % > % = es.) Con-  
sider a vertical line midway between lattice sites. We let 920 denote functions 
of  the arrows tha t  intersect this line and % (resp. 92z) functions of  the arrows 
on the right (resp. left). We define 0: 92+ = [% u 920] -+  92- = [% u 9-1o] as 
follows (here [92] is the algebra generated by 9.1): I f  a~ (i a bond) is + 1, depend- 
ing on whether  the arrow points  right (resp. up) or left (resp. down) for  i 
horizontal  (resp. vertical), then 0(cq) = ~0~ for  horizontal  bonds  and 0(a 0 = 
-cr0~ for  vertical bonds.  By the general  theory m~ the uncoupled state is RP. 
Moreover ,  the induced m a p  f rom configurations at s i t e ,  to those at site 0(~) 
is 0(1) = (3), 0(2) = (4), 0(3) = (1), 0(4) = (2), 0(5) = (6), 0(6) = (5). Since 

I 6 

I 

I 
8 

Fig. 8. Configurations of the six- and eight-vertex models. 
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the basic interactions only involve spins in ~1+ or 9.1_, H is of  the form A + OA 
so long as q = e3, e2 -- % e5 = e6. Again by the general theory (11~ the inter- 
acting state will be RP. I f  

q = E2 = e3  = e ~ ;  e5  = e6  ( 6 . 2 )  

we will have RP  in both horizontal  and vertical planes. In that  case, by 
mimicking the p roof  of  Theorem 4.3 o f  Ref. 11, we will obtain the following 
chessboard estimate: 

T h e o r e m  6.1. For  any function F o f  the arrows coming into a single 
site/x, let 7(F) = ( I ~ A r ~ ( F ) )  1/IAl, where r~(F) is a translate o f  F i f ~  - /~1 -= 
c~ 2 - /z~ ~ 0 (rood 2), a reflected (by 0 as above) translate if c~z - /xl + 1 -~ 
c~ - /z 2 _= 0 (rood 2), etc. Then whenever (6.2) holds, we have in a 2L by 2L 
torus 

where F~ is a funct ion o f  the arrows at site a. 
N o w  suppose that  (6.2) holds and e5 < q .  Then there are two ground 

states, as is easy to see f rom RP:  one obtained f rom state (5) and reflection, 
and the other f rom state (6). They are interchanged by translations of  one 
unit  or by flipping all arrows. We can organize contours  as follows: let 
s~ = + 1 if the arrow on bond i is in the direction it would be in one ground 
state, - 1 if it is in the other direction. We now tilt our  heads by 45 ~ and think 
of  the system as an Ising model  on a square lattice with spacing �89 obtained 
by putt ing dots on the midpoints o f  bonds. Place contours  in the s tandard 
way for  an Ising model, so in terms of  the original lattice a contour  9' is a 
collection o f  ]7[ diagonal segments of  length �89 The six-vertex condit ion 
implies that  contours  cannot  turn at vertices in the original lattice but  only at 
points in the dual lattice o f  the original lattice (see Fig. 9 for a typical contour).  
This reduces the number  of  contours  to be counted when one pushes through 
to an estimate on transition temperatures. Clearly 7 passes through �89 
original lattice sites, and at each site the configuration is forced to be one o f  

Fig. 9. A typical contour. 

i < - - "  ~"< ~i 

! t , - - 3 "  < 3"--< 

�9 - - - - 3 !  

,r 
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1-4. Moreover, under repeated reflection the projection onto any of the con- 
figurations 1-4 leads to an array like that shown in Fig. 10 with energy per 
site �88 + e2 + ea + e4). Thus, by Theorem 6.1, 

Prob(7) ~< exp[-�89 - %)] 

in the usual way. Thus, since (cry) = 0 in the periodic state, we obtain: 

T h e o r e m  6.2. The Hamiltonian (6.1) with (6.2) and q > E5 has at least 
two equilibrium states for fl large, with <a~) ~ 0 and long-range order. 

If  q ~< es, we obtain a structure very similar to that in Model 2.2 when 
(2.5) fails. Thus one expects no long-range order; indeed this follows from the 
known analyticity of the pressure in that case. ~37~ 

M o d e l  6.2. (Eight-vertex model.) We have RP in the same planes as in 
Model 6.1 so long as e7 = e8 in addition to (6.2). If  e5 < min(q, eT), one 
obtains phases with the same structure as in the earlier model. Indeed, the 
only change in the analysis is that contours can now have corners at original 
lattice sites. If  e7 < rain(q, es), there are again two ground states and by 
mimicking the argument in the last model, one obtains multiple equilibrium 
states. I f %  = ~7(i-e.,el = e2 = % = e4=  ~ a n d %  = E6 = E7 = ca = -E), 
then the model is invariant under reversal of all the vertical arrows in any 
column or all the horizontal arrows in any row, which suggests the absence 
of any long-range order. This is supported by the following exact calculation 
of the partition function with free boundary conditions. One can make an 
arbitrary choice of all vertical arrows and of one horizontal arrow in each 
row; once this choice has been made, the eight-vertex condition determines 
all the other horizontal arrows. Moreover, the equality of energies in two sets 
implies that the energy of a configuration is completely determined by the 
vertical arrows. Therefore if there are M rows and L columns, we have 
Z = 2MQ L, where Q is the partition function for a single column. For each 
column, the position of the bottom arrow is irrelevant and then we pick up a 

j ; j  
Fig. 10. A universal configuration. 
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factor  of  _+ e, depending on whether each successive arrow is parallel or 
antiparallel to the preceding one. Thus Q = 2 M +*(cosh fie) M, so 

z = 2M+L(2 cosh/3e) T M  

M o d e l  6.3.  (Diagonal  RP in the generalized F model.) As an exercise 
in RP, we want to examine when Model  6.1 is RP in a diagonal line th rough  
sites. Thus, imagine a diagonal line going f rom the lower left to the upper  
right. The geometric 0' on bonds takes vertical bonds into horizontal  bonds. 
We will define O' on the bond arrows by 0'( "~ ) = +-,  0'( ,~ ) = --% 0'(-->) = 4 , 

0'(<---) = ~", i.e., geometric reflection followed by flip. Then O' will leave states 
3-6 unchanged and will interchange states 1 and 2. Thus if q = c2, the part  of  
the Hamil tonian that does not  involve sites on the line will have the fo rm 
A + OA. To see whether the remaining piece of  - H has the form ~ B~O& we 
need to look at whether the matrix of  statistical weights for a state t* above 
and v below is positive definite. There are four  Ibossibilities for ~: a = +-~, 
b = -+*, c = ~ ,  d = *-~. Thus Oa = <+, Ob = , ~ ,  Oc = ,-+, Od = t+-, and 
the matrix A,~ = exp[ - /3  energy of  (/,0v)] has the form 

t 
e-~% e-~% 0 0 t 
e-/~% e-~% 0 0 
O0 0 e - e ~  0 

0 0 e - B q /  

So, with the condit ion q = % already required, positive-definiteness is 
equivalent to exp[ -p(e~  + e6)] - e x p [ - / ? ( q  + E2)] /> 0, i.e., % + E6 ~< 
q + E2. As the general theory (Schoenberg's  Theorem) predicts/1~ the con- 
dition is independent  o f  p. Thus:  

T h e o r e m  6.3.  The six-vertex model is RP  with respect to reflections in 
diagonals as described above if and only if q = e2 and Ea + e6 ~< q + e2 (the 
conditions % = % and % = e6 are not  required). 

By using this theorem and reflecting in two diagonal directions, one can 
extend Theorems 6.1 and 6.2 to the case where q = e2, % = %, % + e6 < 2 
min(q ,  ca). 

7. THE PROJECTED PEIERLS A R G U M E N T  

In  this section we want  to describe a method which allows one to study 
a v-dimensional model  by considering only contours  in a two-dimensional  
plane. This argument  applies to some situations where a naive v-dimensional 
contour  argument  is not  applicable. We illustrate the method in a simple 
case: 
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M o d e l  7.1. (v-dimensional Ising model.) Consider the nearest neighbor, 
spin-�89 Ising model in v (>2)  dimensions.~ As usual, let P~• be the projection 
onto s~ = +_ 1. Suppose we show that (P~+PB-) <~ ~ for all c~,/3 in a common 
two-dimensional plane of the lattice [there are (;) types of such planes]. Then 
for any ~z, y we can find/31 . . . .  , j3k with k = [�89 - 1)] and the pairs (% ill), 
(t31,/?2),..., (/3k, :/) in common two-dimensional planes. But since (with 

/30 = '~, ~ + 1  = 7 )  
k 

J=O 

we see that (P~+P~-) ~< (k + l)~. Thus a proof of two-dimensional "long- 
range order" implies full long-range order. 

Now let ~z, fl lie in a common plane. By considering configurations of the 
spins in that plane, we can dominate (P~ +PB-) by a sum, over contours P in 
that plane, of the probability P(F)  that in that plane all the spins inside r 
are plus and those outside F are minus. But by chessboard estimates, P(F)  ~< 
exp( -a ] I ' [ )  with a --> oo as T---> 0. This proves long-range order. 

M o d e l  7.2. (The Slawny model.) Take v = 3 for simplicity and spin-�89 
spins. For each a, a square face of some cube in the basic lattice 773, let t= be 
the product of the spins at the corners of a. The Slawny Hamiltonian <5~ is 

H =  ~ t ~  
r 

The reason for the interest in this Hamiltonian is that is possesses an infinite 
local symmetry group; namely, flipping all spins in any family of parallel 
planes leaves H invariant. This implies that there will be infinitely many 
phases once some kind of long-range order is shown. We remark that, while 
there are some similarities between the Slawny model and the currently 
fashionable P72-gauge model, they are very different. The latter model has 
symmetries that affect only a finite number of spins, and no long-range 
order. 

Two proofs of such long-range order have been given: in Ref. 50, Slawny 
used correlation inequalities to compare the model to the two-dimensional 
Ising model, and in Ref. 28, Holsztyfiski and Slawny introduced a sophisti- 
cated contour argument applicable to this model. Here, we will prove a kind 
of long-range order. Going from this to the infinite number of states will be 
left to the reader. Note first that one has RP in planes between lattice sites. 
Fix a horizontal plane, and for each (original lattice) site c~ in the plane let 
z~ be the product of the spin at ~ and the spin directly above a. Let P~ • be 
the projection onto z~ = _+ 1. We will show that (P~+Py-)  is small for /3 
sufficiently large, by a two-dimensional contour analysis. In the usual way, the 
probability of a contour F will be dominated by alrl/% where a = c,1%~/A . 
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Here Puniv results from taking P~+P2+6 [3 = (l,  0, 0)] and making repeated 
reflections, with a two-element period in the vertical and 3 directions and a 
one-element period in the third direction. Since in the resulting configuration 
1/12 of the squares have t~ = - 1 ,  we obtain a - +  0 as/3--~ or. Finally, we 
note that <P~+) = <P~-)  = �89 by the previously mentioned symmetry. This 
implies long-range order. 

M o d e l  7.3. Let us contrive a model where the method of this section 
works, but where no other method we know will work. Take the Slawny 
model and make a small (proportional to E) perturbation by adding a nearest 
neighbor antiferromagnetic coupling and a small external field. This per- 
turbation destroys the ferromagnetic properties that make the correlation 
inequalities work, and the decomposition property of  Ref. 28 fails. One can 
use the Pirogov-Sinai method, but the resulting bound on the transition 
temperature will go to zero as e does. By modifying the method of Model 7.2 
we obtain a lower bound going to the bound of that model as e + 0. 

8. T H E  B A L A N C E D  M O D E L  

On the lattice 2 ~ the basic Hamiltonian is 

-/3H =/3 Z ~ 2(v - 1) ~e~ (8.1) 

where the first sum is over all nearest-neighbor pairs and the second sum is 
over all next-nearest-neighbor pairs. This model entered naturally in our 
analysis in Ref. 11. I f  -1 / [2(v  - 1)] is replaced by ~ in (8.1), then one has 
RP about planes between sites if and only if 2I~](v - 1) ~< 1, i.e., (8.1) is at 
the borderline of RP. Moreover, it is at a point of balance between ferro- 
magnetism and antiferromagnetism. The interaction of a single spin with a 
neighboring hyperplane of all plus spins is zero due to a precise cancellation 
of the ferromagnetic and antiferromagnetic interactions. For this reason, we 
call the model the "balanced model." 

M o d e l  8.1. (Balanced Ising model; breaking of discrete symmetry.) 
Here we have nothing definite to report; we will describe what we believe 
happens. First, there should not be a first-order phase transition in two 
dimensions: for, if one uses the naive Peierls argument, one finds that only 
corners of contours are " b a d "  in that they make positive contributions to the 
energy. Thus, there are infinitely many contours (namely those with four 
corners) with the same energy shift, and one expects entropy to overwhelm 
energy and prevent the occurrence of long-range order. 

We believe that in u i> 3 dimensions, there are at least two phases 
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(indeed, as we discuss below, probably exactly two). Various methods have 
not yet yielded a proof: 

(i) The basic chessboard Peierls argument fails for an interesting reason. 
In finite volume, one must consider three kinds of contours: ones that 
surround ~, ones that surround 7, and ones that wrap around the torus. The 
first two classes typically have negligible probability as I A] --+ oo. However, in 
this case there are contours of zero energy wrapping around the torus, so that 
the chessboard Peierls argument fails. 

(ii) The naive Peierls argument comes very close to working: use plus 
boundary conditions and put in conventional contours P (which are two- 
dimensional if v = 3). The set of "edges"  of P is what counts. Given a set e 
of edges, of length [e l, the number of P with those edges is easily bounded by 
A/~1. Moreover, the set of connected edge graphs that surround a vertex ~ is 
easily bounded by BC lr The problem is that the set of edges need not be 
connected. Indeed, if I? is a large cube of side I with l unit cubes removed from 
the surface, lei ~< 12l + 12/, but the number of ways of removing the cubes 
goes like 

which overwhelms the energy factor. 
(iii) The analysis in (ii) suggests that we try a procedure of removing a 

single connected piece of edge contour. This is essentially the method that 
Holsztyfiski and Slawny (28~ use. The problem is that in their language the 
decomposition property fails, and it is far from clear how to make this pro- 
cedure work. 

(iv) One can try the projected Peierls argument of Section 7. As in the 
analysis of the Slawny model (Model 7.2), one easily shows that with P~ as 
in that model 

(P~+P, - )  -+ 0 as /3--+ ~ (8.2) 

The difference from the Slawny model is the following: in that model, 
<P~+) = (P ~ - )  = �89 by symmetry, so (8.2) implies that long-range order 
occurs. In the case at hand, it seems quite likely that <P~-) -+ 0 as/3 -+ o% 
preventing long-range order of the t~ = ~ +  6. Of course, <P~-) small 
means that neighboring spins tend to have the same sign, which strongly 
suggests that there is long-range order of the ~ ' s .  

(v) The following chessboard Peierls argument works, modulo a geo- 
metrical lemma which we have not been able to prove. Consider four sites 
~1 . . . . .  ~4 forming the corners of a rectangle R with sides parallel to the x, y 
axes. We wish to show that < 1 ~ )  > �89 for large/3, uniformly in R. This will 
imply long-range order of some sort, although not necessarily a spontaneous 
magnetization. The geometrical result is the following: 
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C o n j e c t u r e ,  In any configuration with %1~r,2%3%, = - 1 there is some 
L and some connected set of contour edges of length L within a distance 2L 
of one of the ~. 

Given this conjecture, the inequality follows by chessboard estimates and 
easy bounds on the number of connected sets of edges of length L in a given 
volume. The conjecture would follow in turn from a second conjecture: 

Conjecture. In any configuration as above, there is a connected com- 
ponent E of contour edges such that either E is unbounded and intersects R, 
or E is bounded and the smallest box with sides parallel to the axes containing 
E also contains one of the a~. 

While these conjectures seem reasonable, we have not been able to prove 
them. 

(vi) One can try infrared bounds. As we shall see, these only work if 
v /> 5, where indeed one can prove that some long-range order occurs. 

The Hamiltonian (8.1) has an infinity of ground states; indeed, any array 
of hyperplanes with constant % in each hyperplane is a ground state. On this 
basis, one might expect an infinity of phases, but we believe this is unlikely, 
for the ground states are not related by a symmetry. For this reason, one 
should expect the need for small external fields to manifest the instability 
associated with the ground state. Indeed, adding a term f iC~J~ to the H of 
(8.1), one can still prove (8.2) uniformly in C small. On the other hand, it is 
easy to see that for suitable Co and fi0 

for T C > Coil-~, fi > rio. This means that there will be multiple phases at a 
point C(/3) with IC(~)I ~< C0p -x. More generally one expects, given n, to be 
able to add a suitable small external field and obtain at least n phases. 

M ode[  8.2. (Balanced classical Heisenberg model; breaking of continu- 
ous symmetry.) The spin wave energy in (8.1) is 

[cos(   + + Ep = ~ = l c ~  1)~=lj> i 

(8.3) 
There are several important features of (8.3): 

(a) Ep /> 0; E~ = 0 if and only if at least v - 1 of thep~ vanish. 
(b) Ep ~ p4 for p near 0; E,  ~ (p - p0) 2 for P0 r 0, but v - 1 com- 

ponents ofpo zero. 
For  v > 5, fEy  1 d~p < co, so that the FSS method (17) of  infrared 

bounds implies that the two-point function is a measure with some concen- 
tration on the "man i fo ld"  of zeros of E~. This in turn implies the existence of 
multiple phases. This argument also applies to the classical Heisenberg model 
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[a~y in (8.1) replaced by ,=.o~, , a unit vector]. I f  our  picture (in the 
discrete case) o f  instability but no infinite number  of  qualitatively different 
phases is correct here too, then one expects the singularity in the two-point  
function to occur only at p = 0. 

A P P E N D I X .  A T O P O L O G I C A L  T H E O R E M  

In  our discussion of  multiphase results we required a theorem (Theorem 
A3 below) which is a special case of  Theorem 13 of  Brezis. (2~ Since this 
reference is of  limited availability, we provide here for the reader 's convenience 
a p roo f  patterned after ideas f rom (2~ and also some ideas contained in a p roof  
given us by J. Mather  at a time when we were unaware of  Brezis' paper. 

k e m m a  Aq.  (Variational inequality of  Har tman  and Stampacchia.)  (2~ 
Let A be a cont inuous map f rom C, a compact  convex subset o f  R~, to R ~. 
Then there exists u e C so that  ( A ( u ) ,  u - v) <~ 0 for all v ~ C. 

P r o o f  (Brezis, (2~ Lemma 4). Since C is compact  and convex, for any 
z ~ [R ~ there exists a unique point  P ( z )  ~ C with 

l iP ( z ) -  zli = i  lix- zll 

Notice that  P(z)  = u if and only if for all v ~ C, (d/d),)I/u + z(v - . )  - z LiI =0 
/> 0, which holds if and only if (u - z, v - u) ~< 0 for all v ~ C. N o w  let 
T: C ---> C be defined by 

T ( u )  = P ( u  - A ( u ) )  

By the Brouwer fixed-point theorem, (aa~ there is some u with T ( u )  = u, i.e., 
with (u  - ( u  - A ( u ) ) ,  v - u)  ~ 0 for all v ~ C. I I  

T h e o r e m  A2. Let &, be the canonical n-simplex {(to . . . .  , tn) ~ R ~+1" 
h >/ 0, ~t~ = 1} and let {Ej}~"=x (Jn = 2 ~+~ - 2) be the family of  generalized 
edges (subsets where some nonempty  subset {h}~h of  the t 's are all zero and 
the other t ' s  are all nonzero).  Let F:2x~---> A~ be a continuous map with 
dist(F(u), Ej) < (n + 1) -~ for all u ~ Ej and all j. Then there exists some 
u ~ A~ with 

(n' ' )  F ( u )  = Xo =- + 1 . . . .  ' n + 1 

P r o o f .  Let A ( u )  = F ( u )  - Xo. By Lemma A1, there exists u0 ~ 2x, with 
( F ( u o )  - Xo, Uo - v) <<, 0 for all v c A .  I f  u0 is an interior point  of  &~, then 
F ( u o )  - Xo must  be zero, so the theorem is proven. Since ~2x~ = ujEj ,  we 
will be done if we can use the condit ion dist(F(u), Ej) < (n + 1)- ~ to prove 
that  u0 cannot  lie in any Ej. Consider first an E~ with a single zero coordinate. 
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Fig. 11 

eo,- ,all v~An) 

/ 
Ej J "u 

Fix u~Ej .  Then {a: ~a~ -- 0, (a, u - v) ~< 0 for all v ~Am} is a half-line 
perpendicular to the face Ej. Thus (F(u)  - xo, u - v) <~ 0 implies that F(u)  

must lie in a half-line moving up from xo (see Fig. 11), and this is not allowed 
by the condition dist(F(u), Ej) < (n + 1)= 1. A similar geometric argument 
works for each face. [ ]  

T h e o r e m  A3. (A rather special case of Theorem 13 of Ref. 2). Let F be 
a map of An into convex subsets of 2x, so that {(x, u): x ~ zX~, u s F(x)} is 
closed. Suppose that for some A < (n + 1)-1 and each generalized edge Ej 
we have that x ~ Ej and u ~ F ( x )  implies that dist(u, Ej) ~ A. Then there 
exists u ~ A so that 

) Xo = n + 1 . . . . .  n + 1 ~ F(u)  

Proof .  Suppose for each ~ we find F0: A~ -+ Am, so that for dist(u, 82x,) > 3, 
dist(Fgu), F(u))  < ~. Then by Theorem A2 we can find, for ~ small, u0 such 
that dist(u6, 8An) > ~ and dist(xo, F(uo)) < ~. Thus by the compactness of 
An there is u such that Xo ~ F(u) .  Let G(u) be the barycenter of F(u)  for 
u ~ 2x~, and otherwise G(u) = P(u) ,  the nearest point to u in A .  G is not 
continuous, but ifj~ is a smooth function supported in {x: dist(x, 0) < E} and 
f j~d ~+ ix = 1, then G~ = G .  j~ is smooth and dist(G~(u), F(u))  is small by the 
hypotheses on F. Choosing Fo = G~(o) for suitable e(~), the result follows. [ ]  

Remark .  Here is an alternate proof of Theorem A2 which depends on the 
following lemma of Sperner(58): 

L e m m a  A4. Let A, be an n-simplex with (n - D-dimensional faces 
Gz . . . .  , G,+x. Let B1 . . . . .  B~+I be closed subsets of A~ with B~ n G~ = ;~. 
Then either njBj # ~ or nj(A~\Bj) # ~ .  In particular, if ujBj = zX~, then 
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Alternate proo f  of  Theorem A2.  Let F~(u) denote the coordinates of 

F(u). Let 
B j = { u :  Fj(u) >1 1/(n + 1)} 

Then  wjBj  = A,. By hypothesis, B j n  Gj = ;~, so by the lemma n j B j  va ~ .  
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